Rev. Econ. Design 3, 93-127 (1998)

Review
of Economic
Design

(© Springer-Verlag 1998

The scheduling and organization of periodic
associative computation: Efficient networks

Timothy Van Zandt*

Department of Economics, Princeton University, Princeton, NJ 08544-1021, USA
(e-mail: tvz@princeton.edu)

Received: 15 October 1994 / Accepted: 6 March 1997

Abstract. This paper characterizes the efficient decentralized networks for cal-
culating the associative aggregate of cohorts of data of a fixed size that arrive
periodically. Radner (1993) proposed this problem of periodic parallel associative
computation as a model of the ongoing information processing and communica-
tion by the administrative staff of a large organization. For a simpler model in
which the organization processes a single cohort of data — which is equivalent
to the periodic model when the agents are paid only when busy — he found that
the efficient networks are hierarchical but quite irregular, even though the com-
putation problem and technology are each symmetric. In the periodic model in
which managers are paid even when idle, it becomes important to minimize idle
time when scheduling managers to processing tasks. Such scheduling appears
more difficult when each problem is processed by an irregular hierarchy, which
suggest that hierarchies might be more regular in the periodic model. However,
we show that in a class of efficient networks for periodic computation that spans
the efficiency frontier, the processing of each cohort is similar to the efficient
processing of a single cohort, and the overall organizational structure is not even
hierarchical.

JEL classification: D83, D23

Key words: Organizations, decentralization, parallel processing

* This is part 2 of a revision of a paper entitled “Periodic Parallel Addition,” which I wrote while
I was a Post-Doctoral MTS at AT&T Bell Laboratories (1988-1989). The support of AT&T Bell
Laboratories is gratefully acknowledged. This revision has been supported in part by grant SBR-
9223971 from the National Science Foundation and a CORE Research Fellowship. I benefited from
discussions with Roy Radner and the extensive comments of two anonymous referees.

‘

94 T. Van Zandt

1 Motivation

The agents in organizations such as firms jointly process information about their
environment that is needed for decision-making. This is called decentralized
information processing, and it is analogous to parallel processing within a multi-
processor computer and to distributed processing in a network of computers. By
studying optimal decentralized networks for various computation and decision
problems, we obtain insight into how information processing activities affect the
structure, performance and returns to scale of organizations.'

A simple but prevalent and important example of the information process-
ing tasks in organizations is associative computation. The characterization of
decentralized associative computation as a means to understand information pro-
cessing in organizations was proposed and developed by Radner (1993), who
considered two models. The one-shot model considers the aggregation of a sin-
gle list of data, without considering possible interaction with other computation
tasks. The periodic (or systolic) model considers the aggregation of each of mul-
tiple independent cohorts of data, which arrive at fixed intervals and are of the
same size. This model is meant to capture the ongoing nature of computation
in organizations.? Radner (1993) characterized a class of efficient networks for
the one-shot model, but not for the periodic model. The purpose of this paper
is to provide a full characterization of a set of efficient periodic networks that
can attain any efficient performance for the periodic model (but with efficiency
defined with respect to a slightly restricted class of networks that satisfy a weak
stationarity condition).

The appropriate measure of managerial resources in the one-shot model is
the number of operations.3 In the periodic model or in any model in which
the organization must handle multiple information processing problems, if man-
agers were paid on an hourly basis and hence only for the number of operations
performed (and if the organization can use a distinct network to process each
problem, as is allowed in Radner’s periodic model), then the organization should

! Such an exercise presumes that administrators have limited computational ability, and hence
are boundedly rational. This explicitly-modeled bounded rationality determines the feasible set of
organizations. The process by which one of the feasible organizations is selected or comes into
existence is not modeled. The reasons for characterizing organizations that are constrained-optimal
within this feasible set are the same as for studying optimal behavior in other economic models, and
are not based on a presumption that there is an unboundedly rational organization designer. Instead,
(i) this characterization helps delimit the set of feasible organizations and thereby understand the
effect of information processing constraints, (ii) efficient organizations are a benchmark that may
approximate actual organizations that have operated in a stationary environment for a long time (in
particular, on a longer time scale than the daily computational activities that are explicitly modeled),
and (iii) efficient organizations are a natural objective for the economist as organization designer.
See Van Zandt (1997a) for further discussion.

2 The ongoing nature of computation is captured more realistically in real-time processing models.
See for example, Van Zandt (1997a,b).

3 See Meagher and Van Zandt (1997) for a discussion of managerial costs in the one-shot model.
Radner (1993) and Keren and Levhari (1979, 1983) measured resources by the number of managers,
but, as shown in Meagher and Van Zandt (1997), their results on efficient hierarchies also hold when
resources are measured by the number of operations. For this reason, their papers are treated here as
if they measured managerial costs in the one-shot model by the number of operations, as we do.

‘

Periodic associative computation: Efficient networks 95

use a separate efficient one-shot network for each problem. However, here, as in
Radner (1993), we measure managerial costs in the periodic model by the number
of managers in the organization. This presumes that the organization must have
a fixed number of managers who are paid salaries even when idle.* Therefore,
the actual distinction between the one-shot and the periodic models is that in
the former, managers are paid an hourly wage only for the time they are busy,
and in the latter managers are paid salaries whether busy or idle. Comparing
these models thus allows one to study how the need to schedule managers to
information processing activities in order to reduce idle time affects the structure
and costs of decentralized associative computation.

The organizational structure that we infer from a decentralized information
processing network is the graph that depicts the flow of information between
managers. This graph is naturally a hierarchy (tree) in the efficient one-shot
networks (see Radner 1993; Van Zandt 1997¢; Meagher and Van Zandt 1997).
Whereas models of hierarchies such as in Keren and Levhari (1979, 1983, 1989)
restricted hierarchies to be completely balanced — meaning that the distance from
each leaf to the root is the same and all managers in the same tier have the same
number of subordinates — Radner (1993) found that the efficient one-shot hier-
archies are highly irregular. This is not counterfactual, but it is of interest to
know whether the observed irregularities arise because of asymmetries among
managers, data or computation problems, or whether such irregularities can arise
even with homogeneous managers, data and operations. Furthermore, given that
balanced hierarchies have simple structures that make them convenient for mod-
eling organizations, it is useful to know under what conditions this regularity
property arises endogenously.

Therefore, one question raised of the periodic model is whether it leads
to more regular hierarchies than the one-shot model. One reason for making
such a conjecture is that, in the periodic model, it appears more difficult to
schedule managers to tasks without idle time when the hierarchies that process
the individual cohorts are irregular, because in irregular hierarchies managers
are busy for different lengths of time. In contrast, suppose that every cohort is
processed by a network that is completely uniform, i.e., in which every manager
has the same number of subordinates and hence is busy for the same amount
of time. If the time that each manager is busy is equal to the time between
problems, then such a hierarchy has no idle time. Because the class of uniform
hierarchies is too limited to allow a trade-off between delay and managerial costs,
Radner (1993) proposed a slight generalization, called “preprocessing/overhead”
(PPO) trees; these hierarchies are also fairly regular and have little or no idle
time. Radner (1993) found that managerial costs in the PPO trees were not too
far from a theoretical lower bound, but he did not show that these networks
are efficient, and these networks can only attain a limited range of performance
values.

4 The managers should be thought of as roles, which may be occupied by different managers at
different times. The assumption is that the turnover of managers is slow and managers cannot be
quickly fired when finished with one and rehired when needed for a new task.

.

96 T. Van Zandt

One of the main themes of this paper is that, in contrast to the conjecture
above, the processing of each cohort in efficient network can be very similar to
that of the efficient one-shot networks. This is because idle time can be reduced
without equalizing the workloads of the managers. Instead, it suffices to adjust
the workloads so that they are multiples of the amount of time between cohorts.

In the efficient periodic networks, the workloads are of different lengths,
and the teams that process the cohorts shift over time. Hence a manager may
not report to the same superior or receive messages from the same subordinates
during the processing of each cohort, and the overall organizational structure
is neither hierarchical nor even a forest of trees. However, we note that this
shifting of communication channels is costly if communication costs depend on
the number of links in the network instead of on just the number of messages
exchanged, and suggest that modifying the communication costs in this way may
change the structure of efficient networks, perhaps towards more regularity.

Associative computation is just one of the activities of the administrative staff
of organizations, and the value of this literature is not primarily specific predic-
tions or recommendations about the shape of hierarchies. Instead, this literature
has been a vehicle for exploring many issues in information processing in orga-
nizations that will also arise in other information processing tasks and models,
such as communication costs, the trade-off between processing costs and delay,
and the distinctions between one-shot versus repeated computation, salaried ver-
sus non-salaried managers, and stationary versus non-stationary networks. All of
these themes are explored here.

2 Model

This paper draws extensively on the definition of the model and the preliminary
results contained in a companion paper (Van Zandt 1997c). The current paper
is not intended to be self-contained, and the companion paper will not be cited
each time notation, definitions and results from that paper are used.

As in Van Zandt (1997¢), there is a fixed set N = {1, ... , N} of data sources
of finite size N > 2 and a set 7 C N of arrival times. At the beginning of
each cycle 7 € T, an organization receives a cohort {X;,,... ,Xy,} of data
containing one item from each data source, and must calculate X1, @ -+ - ® Xy~
for an associative and commutative operation @. The cohort that arrives in cycle
T is called cohort 7.

In this paper, we consider two models. In the one-shot model, a single cohort
arrives in cycle 0, so that 7 = {0} (and the cohort subscript will be often
suppressed). In the periodic model, a new cohort arrives every T cycles, starting
in cycle 0, so that 7 = {7 € N|7 mod T = 0}.

The cohorts are processed by a network of managers, according to the com-
putation model in Radner (1993). The current paper is based on the more formal
statement of the capabilities of individual managers and the definition of a net-
work (M, T) given in Van Zandt (1997¢). The model does not account for costs

‘

Periodic associative computation: Efficient networks 97

of memory (data storage) and of the transmission of messages. Hence, the only
computation or managerial costs are the managerial wages. We say that a manager
in a network (M, Z) is busy in cycle ¢ if she performs an operation; otherwise,
she is idle. As discussed in the introduction and in Meagher and Van Zandt
(1997), in the one-shot model managers are paid only when busy, whereas in the
periodic model we presume that the organization has a fixed size and managers
are paid even when idle.

Definition 2.1 The size of a network (M, I) is the number M of managers in
M. The managerial costs of a periodic network (M,I) are equal to M. The
managerial costs of a one-shot network (M, T) are equal to the number W of
operations in T.

A network is functional if the aggregate of each cohort is sent to the output
device. If a network is functional, the delay for each cohort is denoted D(7), and
the function D : 7 — N is called the delay of the network. Dominance, weak
dominance and efficiency (within the class of functional networks) are defined
in the standard way with respect to delay and managerial costs (for each, less is
better).

As stated in Van Zandt (1997c, Sect.5), every functional network is weakly
dominated by an essential network, which is a functional network such that it
is not possible to eliminate a manager or instruction from the network and still
obtain a functional network. Hence, a network is functional if it is essential, and
it is efficient if it is also not dominated by any essential network. These facts
are very useful to us because of the characterization of essential networks given
in Corollary 5.1 in Van Zandt (1997c). According to this result, each manager’s
instructions in an essential network can be partitioned into rasks, which is a set
‘H of instructions performed consecutively by the same manager that begins with
a LOAD, followed by zero or more ADD’s, and then concludes with a message
to a manager or to the output device.

Definition 2.2 Let (M, Z) be a network and let H C T be a task. If the LOAD in
H is executed in cycle t; and its message is executed in cycle t,, then we say that
‘H is active in cycles t1, ... ,t, — 1, and the duration of H is t, — t|. The manager
who executes the instructions in ‘H is said to be assigned or to perform rask H.

Remark 2.1 Let (M,Z) be an essential network. Note that the manager who
performs a task H C Z cannot execute any other instructions while H is active. As
long as we respect this restriction, we can construct a new network by reassigning
one or more tasks to different managers. (“Reassigning” a task H to a manager
m means changing the manager who executes the instructions in ‘H to m.) The
resulting network is essential and has the same delay and the same number of
operations in any cycle as does the original network.

<

98 T. Van Zandt

3 Maximum-slack one-shot networks

The purpose of this section is to characterize a class of one-shot networks, called
MS networks. The main motivation for this exercise is that the MS networks
will be the building blocks for efficient periodic networks in Sect. 4. Theorem
3.1 is also of independent interest as a characterization of efficient information
processing in the one-shot model, because we show that any one-shot network
is weakly dominated by an MS network.

Henceforth, we need to distinguish more frequently between one-shot and
periodic networks. Therefore, we denote a one-shot network by (Q, J), we let
Q be the number of managers in Q, and we index managers in @ by g. The
symbols (M, T), M and m are reserved for periodic networks. Furthermore, we
denote the delay D (0) of a one-shot network simply by D. Recall that the measure
of managerial costs for one-shot networks is the number W of operations.

In the rest of this section, a network (without a qualifier) means an essential
one-shot network .

We begin by defining some properties for networks and stating the main
result: :

Definition 3.1 For each manager q € Q in a network (Q,J), let b(q) be the
first and let c(q) be the last cycle in which manager q performs an instruction
in J.? Manager q is said to begin in cycle b(q) and to finish in cycle c(q). The
total number of cycles managers are idle before they begin, 7€Q b(q), is called
the slack of (Q, .T).

Definition 3.2 Ler (Q, J) be a network.

PO. (Q,J) is a maximum-slack network if and only if it has as much slack as
any other network with the same size and delay as (Q, J).

Pl. (Q,J) is simple if and only if each manager performs one task.

P2. (Q,J) is continuous if and only if, for each manager q € Q and each cycle
t such that b(q) <t < c(q), manager q performs an operation in cycle t.

P3. (Q,J) is just-in-time if and only if each SEND is executed in the same cycle
in which it is processed.

P4. (Q,J) has preprocessing first if and only if there are no preprocessing op-
erations after the first postprocessing operation.

P5. (Q,J) is strongly overlapping if and only if each manager performs at least
2 operations before any other manager finishes.

Definition 3.3 A network (Q,J) is called an MS network if and only if it is
strongly overlapping and has maximum slack.

Theorem 3.1 A network (Q, J) is an MS network if and only if it has Properties
PI-PS.

Proof. See Appendix A. O

5 Note that the first and last instructions are a LOAD and a message, respectively.

“

Periodic associative computation: Efficient networks 99

In the rest of this section, we will illustrate the properties defined in Def-
inition 3.2 and discuss the intuition behind and significance of Theorem 3.1.
We defer until Sect. 4 (see especially Remark 4.3) the explanation of why MS
networks are useful for constructing periodic networks (in brief, this is because
slack allows the workloads of managers to be adjusted in order to reduce idle
time).

A message of this paper is that the MS networks that process each cohort
in the efficient periodic networks are similar to efficient one-shot networks. In
particular, it is not true that the hierarchies that process each cohort are more
regular in the periodic model than in the one-shot model because of the cost of
idle time. The following is an indication of the similarity between MS networks
and efficient one-shot networks, and of the irregularity of MS networks:

Proposition 3.1 (Meagher and Van Zandt 1997)

1. An efficient network is simple and strongly overlapping.

2. A simple network is hierarchical.

3. In a simple and strongly overlapping network, each manager processes at
least two raw data.

Thus, both MS networks and efficient networks are simple and hierarchical, but
also irregular, because each manager processes raw data and hence has immediate
subordinates that are data sources. We now briefly examine why Proposition 3.1
holds, as this will also help us understand Theorem 3.1.

That efficient networks are simple and hence hierarchical is illustrated in
Fig. 1. The network on the left is not simple and is not hierarchical. Manager g,
sends a message to ¢, at the end of her first task and then processes a message
from ¢, during her second task. The simple network on the right is obtained by
concatenating q;’s tasks. This eliminates a message and hence a postprocessing
operation.

Note that an equivalent definition of a simple network (given the restric-
tion that networks be essential) is that each manager sends one message. Since
each message except for the OUTPUT is processed, we obtain the following
proposition:

Proposition 3.2 (Meagher and Van Zandt 1997) If a network (Q,J) is sim-
ple, it has N + Q — 1 operations; otherwise, it has more than N + Q — 1 operations.

This means that the managerial costs of simple networks can be parameterized
by the size of the networks.

The balanced hierarchies in Keren and Levhari (1979) are simple but are
not strongly overlapping. This is because managers are arranged in tiers and
the managers in each tier do not begin processing until all managers in the
subordinate tier have finished. The messages from the subordinate tier are then
distributed evenly among the managers in the current tier, who aggregate these
messages and send their partial results to the next tier. The computation begins
when the raw data are processed by the managers in the lowest tier.

“

100 T. Van Zandt

Manager

Q g2 Cycle

4

3

|

o | =

// \
/ I\
POO®G O ®

Fig. 1. Two networks for N = 7. Both networks have 2 managers, but the Lh.s. has 8 operations
whereas the r.h.s. has 7. The L.h.s. is not simple, because manager q; has two tasks. The Lhs. is also
not hierarchical. The r.h.s. is simple and hierarchical.

Radner (1993) showed that such balanced hierarchies, although appealing be-
cause of their regular structure, are typically not efficient. They can be “reduced”
by combining the operations of a manager g, in one tier with the operations of
a manager q; in the subordinate tier, because the operations of the two man-
agers are not concurrent. This reduction is similar to the concatenation of two
tasks performed by the same manager in a network that is not simple, which
was illustrated in Fig. 1. Meagher and Van Zandt (1997) modifies this reduction,
by transferring one of ¢,’s operations to the manager who processes g;’s mes-
sage, so that the reduction also works when g; and g, perform one operation
concurrently. This is illustrated in Fig. 2. Observe that the reduction not only
eliminates a manager, but it also eliminates one of the messages this manager
sends along with the operation that processes the message. Hence, as stated in
Proposition 3.1, efficient networks are strongly overlapping.

In contrast, Properties P2-P4 are not necessary for efficiency. However, they
are clearly necessary properties of MS networks. The maximum-slack condition
first of all restricts the postprocessing, because managers should perform their
operations, and hence send their messages, as late as possible. This means that
each message should be sent just before it is processed (P3) and also that the post-
processing operations should be performed last (P4). For example, the network
(Q,J) in Fig. 3 is not just-in-time. The network (Q, J’) is obtained by delaying
the instructions of manager D. (Q, J') is just-in-time and has more slack than
(Q,J). However, (Q, J’) does not have preprocessing first. By interchanging
manager D’s last preprocessing operation and manager A’s first postprocessing

.

Periodic associative computation: Efficient networks 101

Managers
(i) o g3 Cycle

4
3
2

1

Fig. 2. The network on the left does not have strongly overlapping managers. The network on the
right is obtained by combining the operations of managers g; and g,. It also processes 7 items with
a delay of 5, but it has 1 less manager and 1 less operation.

operation, we obtain the network (Q, J"”). This network does not have more
slack than (@, J’), but it is not just-in-time. By delaying manager B’s opera-
tions by one cycle, we obtain the network (Q, 7"’), which has more slack than
(Q,7').

Once the time each manager finishes is fixed by Properties P3 and P4, the
slack is determined by the total number of operations and the total amount of
time managers are idle between when they start and when they finish. The former
is reduced by making a network simple if it is not already, and the latter is
reduced by making a network continuous if it is not already. For example, after
concatenating tasks. in the network on the left side of Fig. 1 to obtain the simple
network on the right side, and then delaying operations so that the network is
continuous, we obtain the network in Fig. 4, which has more slack than the ones
in Fig. 1. Hence, P1-P4 are necessary conditions for a network to have maximum
slack. Theorem 3.1 states also that the converse holds if the network is strongly
overlapping.

Properties P2—-P4 are not necessary conditions for efficiency because, as long
as an efficient network can have some slack, which is true if and only if Q +
N mod Q@ is a power of 2, the network can be perturbed so that P2, P3 or P4 is not
satisfied, without affecting the number of operations and delay. For example, the
efficient one-shot networks in Radner (1993) satisfy P1, P2, P4 and P35, but not
necessarily P3 (just-in-time); in these networks, all managers begin processing
in cycle 0 and hence there is no slack. However, we have the following result,
which further supports the claim that MS networks resemble efficient one-shot
networks:

Proposition 3.3 Every network is weakly dominated by an MS network. If Q +
N mod Q is a power of 2, then every efficient network of size Q is an MS network.

Proof. See Appendix A. 0O

102 T. Van Zandt

Manager Manager

A B C D Cycle A B C D Cycle
0 - L 0— L
5 5
\ 4 : 4
hand 4 'i‘ ';' - -y 1', 1.- -
H H H : 2 1 H H H 2
+ o+ o+ 4 = + 0+ o+ o+ <
. H H H 1 ' H H H 1
+ o+ o+ - E ST T S -
[S S HE R 0

Network (Q, J) Network (Q, J')
Manager Manager

A C¢c B D Cycle A ¢ B D Cycle
0 — y 0 — y
4 [4
a4 I - - v — -
NG A -
H H H . 2 ' H H : 2
+ o+ o+ 4+ - + 0+ o+ o+ -
H H H H 1 . H H H 1
+ + + + - + + + 4 -
P 0 HE 0

Network (Q,J") Network (Q, ")

Fig. 3. Four one-shot networks with N = 14, Q = 4 and D = 6. (Q,J) is not just-in-time.
(Q, J’) is obtained by delaying the instructions of manager D by one cycle, which increases the
slack. (Q, J’) does not have preprocessing first. (Q, J'’) is obtained by interchanging A’s first
postprocessing operation and D’s last preprocessing operation. This does not increase slack, but the
resulting network is not just-in-time. By delaying B’s instructions, we obtain (Q, J'’), which has

more slack than (Q, J’). -

Remark 3.1 We have not required that MS network be efficient because we will
use inefficient MS networks to construct efficient periodic networks. (Figure 5
shows an example of an MS network that is not efficient.) This will be explained
in Sect. 4. We note here that the postprocessing in MS networks that are not
efficient resembles the postprocessing in efficient MS networks. Specifically,
if we take a particular MS network of size O, we can obtain a class of MS
networks of size Q (i) by adjusting the delay (i.e., increasing or decreasing
the execution time of all instructions) to create more or less slack and (ii) by
redistributing the raw data among the managers subject to the constraint that each
manager processes two items before any manager finishes. Starting two cycles
before the first manager finishes, the processing in different networks in the class
differs only by the execution times of the instructions. Hence, all members of the
class have the same communication subgraphs when the nodes of the graphs are
restricted to the set of managers. Like the efficient networks in Radner (1993),
the communication graph of each network is irregular, in that if each node is
assigned a tier equal to the length of the longest path in the graph from the node
to a data source, then each manager has subordinates in all the tiers below the

.

Periodic associative computation: Efficient networks 103

Cycle

ol =l o] w]| &~

Fig. 4. A simple network with more slack than the network on the left side of Fig. 1, which is not
simple.

manager’s tier, including at least two that are data sources and hence are in the
bottom tier. See, for example, the communication graph in Fig. 5.

Remark 3.2 The construction of the MS networks with Q managers. and delay
D can be described recursively starting from cycle D, when manager q; finishes
with an OUTPUT instruction. In cycle D — 1, only this manager can be busy,
and so she processes a single message, sent by manager g, at the beginning of
that cycle. Then in cycle D —2, these two managers are postprocessing messages
sent by managers g3 and g4 at the beginning of that cycle, as seen in Fig. 5. Let
s €{l,...,[log, Q] —1}. In cycle D —s, there are 2°~! managers who are busy
postprocessing messages from 2°~! other managers, and so 2° managers finish in
or after cycle D —s and hence are busy in cycle D —s — 1. In cycle D — [log, 0],
2Mlog; @1-1 managers are busy. Q — 2/°8221-1 > 0 of these managers process
messages from the remaining managers. The rest, 2/°&21 — Q > 0, process raw
data. Since the first managers to finish do so in this cycle, each manager must then
have two raw data to process in cycles D — [log, @] —1 and D — [log, Q] —2, so
that the network is strongly overlapping. The remaining data are then distributed
arbitrarily among the managers, and a manager with k additional items processes
these in cycles D — [log, Q] —2 —k,... ,D — [log, Q] — 3. This construction
is well-defined as long as:

— There is enough data so that all managers have two raw data to process in
cycles D — [log, Q] — 2 and D — [log, Q] — 1. This is true if and only if
N >2Q +(2M& 21 —), ie., if and only if @ < Q(N), where Q(N) is the
unique solution to N = Q + 2/1&: 21,

— It is possible to distribute the data so that each manager begins in or after
cycle 0. As shown in the proof of Lemma A.6 in Appendix A, this is true as
long as

D >D*(Q,N)=|[N/Q] + [log,(Q + N mod Q)] .
D*(Q,N) is the minimum delay for processing N items with Q managers,
as derived in Radner (1993), for 1 < 0 < Q(N).

‘

104 T. Van Zandt

Manager

A E ¢ B F D Cycle
(008 =
6
5
T r -
: : 4
- + R e + -
H H ' ' H ' 3
+ O+ 0+ o+ o+ % -
H H 1 . ' H 2
+ O+ o+ 2+ % -
H H H H H 1
+ + £ + 4 -
H H ’ 0
4 £y 4 -

//E
;ﬂ

&=

D
AVIN AN AN I\

Fig. 5. An MS network with 6 managers for processing 21 data with a delay of 7. The slack is 4. In
the communication graph, the data sources are shown simply as dots and all edges point upwards.

4 Efficient periodic networks

Theorem 5.1 in Van Zandt (1997¢) tells us that the processing of each cohort
by an essential, periodic network is separate. Therefore, we can represent the
processing of each cohort by a one-shot network, in which time is measured
relative to the time the cohort arrives. To define such representations, we need
the following notation. Let (M, T) be an essential periodic network. For 7 € T,
let M(7) be the managers who execute the instructions in Z(7) and let Z°(7) be
the set of instructions obtained from Z(7) by subtracting 7 from the execution
time for each instruction in Z(7) and by replacing cohort 7 by 0 in each INPUT
and OUTPUT instruction in Z(7). Then (M(7),Z°(7)) is an essential one-shot
network.

Two cohorts 7, and 7, may be processed in the same way but perhaps with
different managers, in the sense that Z°(7;) can be obtained from Z°(t;) by
reassigning tasks in Z%(7;) to managers in M(7;) and by relabeling message
ID’s. We would like to define a one-shot representation so that the processing
of cohorts 7; and 7, can be represented by the same one-shot network. If we do
not require that the mappings from managers in the one-shot representations to
managers in the periodic network be one-to-one, then, without loss of generality,
we can use simple networks for the one-shot representations.

Definition 4.1 Let (Q, J) be a one-shot network. A simple network (Q', J') is
a simple representation of (Q, J) with task assignment o : Q' — Q if there is

-

Periodic associative computation: Efficient networks 105

fa A — A such that J can be obtained from J' by replacing manager q’ € Q'
and message ID a’ € A in the instructions in J' by a(q’) and f,(a), respectively.

That is, (Q, J) can be obtained from (Q’, J’) by reassigning the tasks and
renaming the message ID’s. There are obvious isomorphisms between the tasks
in (Q, J) and the tasks in (Q’, J’) and between the execution graphs of (Q, J)
and (Q',J’).

If (Q,J) is a simple representation of (M(7),Z°(7)), then we call it a one-
shot representation of the processing of cohort 7 in (M, T). We will be interested
in periodic networks in which the processing of each cohort can be represented
by the same one-shot network, but perhaps with different task assignments.

Definition 4.2 Let (M, Z) be an essential periodic network, let (Q, J) be a sim-
ple networkandlet a. : Q — M(7) for T € T. (M, T) is a replication of (Q, J)
with task assignments {a,} . if and only if, for each T € T, (Q, J) is a sim-
ple representation of (M(7),I%(t)) with task assignment a,. (M, T) is then said
to be a replication network.

We henceforth restrict our attention to replication networks and define ef-
ficiency to mean “undominated within this class”. We conjecture that efficient
networks are actually not dominated by any network, and in particular that any
constant-delay network is weakly dominated by a replication network. However,
even if this conjecture is true, there are networks without constant delay that are
not weakly dominated by any replication network.

Each cohort has the same delay in a replication network, and so we denote
this common value of {D(7)|r € T} simply by D. We refer to the managers in
the simple representation as tasks, in order to distinguish them from the managers
in the periodic network. As defined in Remark 2.1, the duration of a task g € Q
in a simple network (Q, J) is d(g) = ¢(q) — b(q).

As defined in Van Zandt (1996), a stationary network is a replication network
with the same task assignment for each cohort. That is, each cohort is processed in
the same way by the same managers. In a stationary network, each manager must
perform each assigned task every T cycles, and hence the duration of each task
can be no more than T'. This is a severe limitation on networks whose implications
are explored in Bolton and Dewatripont (1994) and Van Zandt (1996).

Weaker than stationarity is the requirement that there be a disjoint collection
of teams of managers, each of which periodically processes cohorts in the same
way. There are multiple teams if the maximum duration of the tasks in the one-
shot network exceeds T. Examples of such replication networks are the ROSE
(“replications of one-shot efficient”) networks in Radner (1993).

It is typically possible to improve upon such a network if we drop the require-
ment that the teams stay together from one cohort to another. Then managers
whose tasks have short durations can process cohorts more frequently than those
whose tasks have long durations. This suggests the following weaker form of
time invariance called semi-stationarity, which means that each manager (i) al-

.

106 T. Van Zandt

Managers
my ma ms Cycle

AN
/\
ONONONONG]

Communication graph of
the one-shot representation.

Communication graph of
the SSR network.

Fig. 6. A semi-stationary network for N = S and T = 2. There are 3 managers in the network, and
each cohort is processed by 2 managers with a delay of 4. Manager m; repeats task B every 2 cycles
and managers m; and mj3 repeat task A every 4 cycles. This network has no idle time.

ways performs the same task in the one-shot representation and (ii) switches to
new cohorts as quickly as possible:

Definition 4.3 (M,) is a semi-stationary replication of (Q,J) if (M,I) is
a replication of (Q, J) with task assignments {o|T € T} such that Ym € M,
V11,72 € T and Vgqi,q, € Q: If o, (q1) = m, then o,(q2) = m if and only if
q1 = q2 and |(12 — 1)/ T| is a multiple of [d(q)/T). (M,ZI) is then said to be
semi-stationary.

Figure 6 shows part of the execution graph of a semi-stationary network
(which is a replication of an MS network). Observe that manager m, alternates
between processing a cohort with manager m; and processing a cohort with
manager ms, but performs the same task in the processing of each cohort.

For any simple network (Q, 7)), every semi-stationary replication of (Q,)
has the same delay and number of managers. In fact, any two such networks
(M,Z) and (M',T') are equivalent, in the sense that there are bijections
S : M > M and f, : A = A such that 7’ is the set of instructions obtained by
replacing manager m € M and address a € A in the instructions in Z by f,,(m)

k4

Periodic associative computation: Efficient networks 107

and f,(a), respectively. We denote the class of such networks by SSR(Q, J), and
also treat SSR(Q, J) as a representative member of this class.
We state our main result:

Definition 4.4 An RMS network is a semi-stationary replication of an MS net-
work.

Theorem 4.1 Every replication network is weakly dominated by an RMS network.

The first step in proving Theorem 4.1, which is also the most difficult, is the
following proposition:

Proposition 4.1 Every replication network is weakly dominated by a semi-station-
ary network.

Proof. See Appendix B. a

The second and final step is easier and more intuitive, and the proof is
included below:

Proposition 4.2 Every semi-stationary network is weakly dominated by-an RMS
network.

Remark 4.1 The proof of Proposition 4.2 makes use of the following fact. In
SSR(Q, J), a manager with task g € Q repeats this task every [d(q)}/T] cohorts.
Hence, [d(gq)/T] managers are assigned task g, and the number of managers in
SSR(Q, J) is equal to }_ ., [d(q)/T]. Therefore, to find the semi-stationary
replication network with given delay that has the fewest managers, we should
search for the simple network with the given delay for which 3°__,[d(q)/T] is
the smallest.

Remark 4.2 Furthermore, we can the decompose the managerial costs of
SSR (Q, . J) into operations and idle time, as follows. Let w(q) be the number
of operations in task g. According to Proposition 3.2, 3 7€Q w(@)=N+Q —1.
Furthermore, w(q) < d(q), and d(q) — w(q) is the number of cycles that task ¢
is idle while the task is active, i.e., after the task’s LOAD and before the task’s
message. The number of cycles a manager with task g is idle between cohorts is

2(q)=T[d(g)/T] —d(q) .

Therefore,
MT =3 T[d(g)/T] =) (w(g)+d(q)— w(@)+z(@)
q€Q q€Q

=N+Q -1+ (d@) —w@)+ Y z(q).

qgeQ qEQ

N + Q — 1 is the number of operations per cohort, qug(d(q) — w(q)) is the
per-cohort idle time within tasks, and 4c02(q) is the per-cohort idle time
between tasks.

108 T. Van Zandt

Tasks Tasks

Cy_cle O<_A E C B D O<_A E C B F D
6
S T
4 M A H 1
3 Anant SRS SRR AR ¥y + pe—r ¢
: SR T R T I T
2 SR R TR S T
L S o .
0 A S S P i
w(q) 7 4 5 6 4 7 4 4 4 4 4
SSR(-):
2(q) 1 0 3 2 1 0 0 0 0
[w(q)/T] 2 1 2 2 1 2 1 1 1 1 1

Network (Q, J) Network (Q', J")

TOTALS | SSR(Q,J) SSR(Q',J")

Tasks 5 6

Operations 26 27

Idle time 6 1

Managers 8 7

Fig. 7. These two MS networks process 22 items in 7 cycles. Also shown for each task are the idle
time z(q) and number of managers [w(q)/T| who perform the task in the semi-stationary replication
of each network when T = 4. Network (Q,.J) on the left is one-shot efficient, whereas network
(Q’, J’) on the right is not because it has one extra manager. However, when T = 4, SSR(Q’, J”)
has one less manager than SSR(Q, [J) because it has less idle time. The communication graphs of
(Q',J’) and SSR(Q’, J') are shown in Figs. 5 and 8, respectively.

Remark 4.3 We can now see why MS networks are good networks to replicate.
First, because they are continuous, there is no idle time within tasks. Second,
because the tasks finish as late as possible in MS networks, there is slack that
provides flexibility in distributing the raw data among the tasks in order to min-
imize the total idle time) 7€0 z(q) (e.g., by setting each task’s duration to a
multiple of T, if possible). We can also see why it may be good to replicate
inefficient MS networks. If we compare the MS networks with delay D and size
Q; with the MS networks with delay D and size Q, > Q;, the former have
Q. — Q) fewer operations than the latter. However, the latter may have more
slack and this slack can be used, as described above, to adjust the durations of
the task in order to reduce idle time. This is illustrated in Fig. 7.

Proof of Proposition 4.2. According to Lemma A.2 in Appendix A, if (Q,J)
does not satisfy P2, P3 or P4, then we can construct a network (Q, J’) with
the same delay as (Q, J) by increasing the execution time of instructions and
interchanging preprocessing and postprocessing operations, such that (Q, J’)
has more slack than (Q, J) and the duration of each task in (Q, J’) is as short
as in (Q,J). (This is also discussed in Sect. 3 and is illustrated in Figs. 3

‘

Periodic associative computation: Efficient networks 109

and 4.) Because [d(q)/T] is weakly decreasing in d(g), SSR(Q, J’) has as few
managers as SSR(Q, 7). Since the slack of essential networks with a given size
and delay is bounded above, this construction can be iteratively applied only
finitely many times, until (Q, 7'} satisfies P2, P3 and P4. Hence:

Lemma 4.1 Let (Q, J) be a simple network. There is a simple network (Q, J')
that satisfies P2, P3 and P4 such that SSR(Q, J') weakly dominates SSR(Q, J).

Proof. See above and Lemma A.2. 0o

Now suppose that a simple network, such as those replicated by Radner’s
PPO networks, is not strongly overlapping. Then there are two tasks g; and g3
such that g, performs fewer than 2 operations before g; finishes. If g; has a
single operation, then according to Meagher and Van Zandt (1997, Lemma 1) it
is possible to delete the task and its instructions without changing the durations of
other tasks. Otherwise, according to Meagher and Van Zandt (1997, Lemma 2), it
is possible to combine tasks ¢; and g, into a single task g, such that the number
of operations in the combined task is one less than the total number of operations
in the two original tasks (w’(g;) = w(q;)+w(gz) — 1). This is illustrated in Fig. 2.
By increasing execution times of operations in the combined task to squeeze out
idle time, as in Lemma A.2 in Appendix A, the duration of the combined task is
equal to the number of operations in the task, which is less than d(q;) + d(g2).
The durations of the remaining tasks either do not change or decrease. Since

(4.1) [(d(q1)+d(q2))/T] < [d(q1)/T] + [d(q2)/T] ,

the number of managers who perform the combined task in the semi-stationary
replication of the modified network is no greater than (and may be less than) the
total number of managers who perform tasks g; and g, in the semi-stationary
replication of the original network.® Hence, we have shown:

Lemma 4.2 Let (Q,J) be a simple network that is not strongly overlapping.
There is a simple and strongly overlapping network (Q', J' that has fewer tasks
than (Q, J) and whose semi-stationary replication has the same delay as and as
few managers as SSR(Q, J).

Proof. See above, Meager and Van Zandt (1997, Lemmas 1 and 2) and
Lemma A.2. O

Now we combine Lemmas 4.1 and 4.2. Let SSR(Q, 7) be a semi-stationary
network. Starting with (Q, .7), we obtain a sequence of simple networks by ap-
plying the construction in Lemma 4.2 if the network is not strongly overlapping,
and then the construction in Lemma 4.1 if the resulting network does not satisfy
P2, P3 or P4. The former decreases the number of tasks and the latter leaves it
unchanged. Therefore, after finitely many iterations, we obtain an MS network
(Q', J'y such that SSR(Q', J') weakly dominates SSR(Q, 7).

This concludes the proof of Proposition 4.2. O

6 It may be strictly less because (4.1) can hold with strict inequality and because the elimination

of an operation from combining the tasks means that the duration of the combined task is strictly
less than d(q;) + d(q2)-

110 T. Van Zandt

5 Efficient performance

Radner (1993) shows that the minimum delay in the one-shot model is 1 +
[log, N|. For D such that 1+ [log,N] < D <N, let Q*(D,N) be the size of
the smallest one-shot network with a delay of D.

Consider the periodic model with N data and T cycles between cohorts.
For D such that 1+ [log,N] < D < N, let M*(D,N,T) be the minimum
number of managers in a replication network with delay D. We can construct the
RMS network with delay D and M *(D,N,T) managers, and thereby calculate
M*(D,N,T), using an algorithm such as the following: Start with an RMS
network with delay D and Q*(D,N) tasks, distributing the data to tasks so as
to minimize idle time. Now replicate an MS network with one extra task and
again distribute the data so as to minimize the idle time. Continue to do this
until adding a task does not decrease the idle time and thus does not improve the
performance. The serial run-time of a crude implementation of this algorithm is
O(N?); for D and N such that Q*(D,N) < v/N, the run-time is O(v/N).” An
efficiency frontier calculated this way can be found in Radner and Van Zandt
(1992). :

If it were possible to replicate an efficient one-shot network with delay D
without any idle time, then the replication would have

N+Q*(D,N)—-1
T

managers. This is a lower bound on M*(D,N,T) that is easier to calculate.
Furthermore, M;*(D,N,T) is the average number of operations per cycle when
managers are not paid when idle (in which case it is optimal to replicate efficient
one-shot networks). Hence, M*(D,N,T)—M;*(D,N, T) measures the increase in
managerial costs due to paying idle time. Proposition 5.1 shows that M;*(D,N, T)
can be a good approximation of M *(D, N, T) when the delay is far enough above
the minimum delay:

M}(D,N,T)=

Proposition 5.1

1. Forall D and N such that 1+ [log,N] <D <N,
(5.1)

T+2-2
M*(D,N,T) < (—*————/ﬂ

*(D,N,T) <T-M;(D,N,T).
3_2/N)ML(]) L()
2. If N 5 00, D — o0 and Q*(D,N)/N — O, then

M*(D,N.T) - M;(D,N,T) _
M(D,N,T)

at a rate O((Q*(D,N)/N)?).
3. IfQ*(D,N) < VN, then M*(D,N,T) < [M}(D,N,T)] + 1.

7 See the proof of part 3 of Proposition 5.1.

L4

Periodic associative computation: Efficient networks 111

YV V2N

A A

Fig. 8. The communication graph of the RMS network (Q’, ') shown in Fig. 7. Managers Al and
A2 repeat task A every 8 cycles. The remaining managers are labclcd by the task that they repeat
every 4 cycles. All edges point upwards.

Proof. See Appendix B. O

A plot showing the difference between M *(D,N,T) and M;(D,N,T) can
be found in Radner and Van Zandt (1992).

6 Robustness of irregularity of hierarchies

As discussed in Sect. 1, one motivation for studying this problem of periodic com-
putation with salaried managers was to see whether the communication graphs
of the efficient periodic networks would more closely resemble balanced hierar-
chies than do those of the efficient one-shot networks. However, we find that this
is not the case. The RMS networks are replications of MS networks, which as
discussed in Sect. 3 are irregular and resemble efficient one-shot networks. For
example, Fig. 5 shows the communication graph of the MS network (Q’, J’) in
Fig. 7. Furthermore, the RMS networks are not even hierarchical, even though
they are semi-stationary replications of hierarchical one-shot networks. For ex-
ample, Fig. 8 shows the communication graph of the RMS network SSR(Q’, J")
in Fig. 7 (see also Fig. 6). Although the communication graphs of the RMS net-
works have no cycles — like any semi-stationary replication of a simple network
whose communication graph has no cycles — each manager may communicate
to more than one manager. Also, the communication graphs are not rooted since
each manager whose task executes an OUTPUT is a maximal element in its
communication graph, and there is more than one such manager as long as the
delay is much longer than the time between cycles. In this section, we consider
how changes in the computation model could change these results.

Our measure of managerial costs does not take into account the cost of
memory and communication links. Recall, however, that a simple network with
Q managers uses exactly Q — 1 communication links between managers, and
any other essential one-shot network with managers uses at least this many.
Furthermore, the MS networks have the property that each manager processes a

“

112 T. Van Zandt

message in the same cycle in which the message is sent (if the execution times
of the INPUT statements are set properly) and hence each manager in an MS
network needs memory for at most for one message. Therefore, efficient one-
shot networks economize in their use of communication links and efficient MS
networks also economize in their use of memory.

Like the one-shot MS networks, the RMS networks use a minimal amount of
memory. However, unlike the MS networks and unlike periodic networks whose
communication graphs are trees or forests of trees, the RMS networks may use
more than one communication link per manager. For example, suppose that 999
data arrive every 2 cycles. The RMS network with a delay of 252 has 4 tasks
per cohort, and the postprocessing is like that of network (@, J’") in Fig. 3.
Tasks A, B and C have 250 preprocessing operations and Task D has 249. (Task
D begins 1 cycle later than the others.) Hence, the duration of tasks B, C and
D is 250 cycles, while the duration of task A is 252 cycles. There are no idle
cycles. 126 managers are assigned task A and 125 managers are assigned to each
of tasks B, C and D. Thus, there are a total of 501 managers in the network.

Three managers who are assigned tasks B, C and D for one cohort finish at
the same time and move on together to the next cohort. However, thé manager
who is assigned task A in the new cohort is different. The three managers are
teamed up with a total of 126 managers who perform task A. Although a manager
with task B always sends his partial sum to the same manager who has task D,
managers with tasks C and D communicate with 126 different managers who
have task A. Therefore, the number of communication links between managers
is 125 + 126 - (125 + 125).

Suppose that instead we keep the managers together in teams. Then three
managers who are-assigned tasks B, C and D for one cohort must be idle for
two cycles aftering finishing the cohort, while they wait for the manager with
task A to finish. Therefore, the number of managers increases to 4 - 126 = 504.
However, each manager with task B, C or D now always sends his partial sum to
the same manager, and so the number of communication links between managers
is 126 - 3. Thus, although this new network has 3 more managers than the RMS
network, it has nearly 2 - 1252 fewer communication links. It may well be that if
the cost of communication links is taken into account, this network is preferred
to the RMS network.

An indirect way to study how costly communication links may affect the set
of efficient networks is to require that networks be stationary, meaning that each
problem is processed in the same way by the same managers. If such a network
is hierarchical, then each manager sends messages to at most one manager, and
the number of communication links is one less than the number of managers.
The maximum time any manager is busy processing each problem determines
the throughput, i.e., the rate at which the organization can process problems. In
the efficient one-shot networks, managers higher in the hierarchy work longer,
and hence there would be a bottleneck when processing periodically arriving
problems. Redistributing tasks from these managers to managers lower in the
hierarchy can increase throughput, at the cost of additional delay. Bolton and

4

Periodic associative computation: Efficient networks 113

Dewatripont (1994) show that if throughput is much more important than delay,
then this stationarity assumption may lead to more regular hierarchies, and if not,
at least to networks that are quite different from those in Radner (1993). Further
results in Van Zandt (1996) also indicate that stationarity can make hierarchies
more regular.

7 Related problems in computer science

The organization design problem that we outlined, like the ones in Keren and
Levhari (1979, 1983, 1989), Radner (1993) and Bolton and Dewatripont (1994)
and in the more general models of Mount and Reiter (1990) and Reiter (1996),
could also be interpreted as algorithm design problems for a parallel processing
machine or for a distributed network of computers. This is not because these
authors have casually reinterpreted models of machines as models of humans,
but rather because very simple models of joint processing by humans and very
simple models of joint processing by machines naturally resemble each other.

Because economists who study decentralized information processing in orga-
nizations have different objectives from computer scientists who study parallel
processing by machines, it is not easy to find the answers to questions that
economists pose about organizations just by sifting through the existing litera-
ture on parallel and distributed processing. (See, for example, Zomaya (1996)
for an overview of this literature.) It would be beyond the scope of this paper
to summarize the insights that such an exercise would yield, but we can briefly
relate this paper to some research in computer science.

To the knowledge of this author, which is based on a selective reading of
the parallel and distributed processing literature and on private communication
with active researchers in the field, the particular model and problem posed here
have not been studied or solved before. A crude explanation for this is that the
problem is a special one and a random draw of all such problems is unlikely to
yield one that has already been analyzed. There may also be more systematic
reasons why this model, which was put forth non-randomly to address questions
about organizations, has not been studied by computer scientists or operations
researchers.

The design of parallel algorithms for a multiprocessor system is often divided
into (i) the writing of an algorithm in a high-level language that abstracts from
the implementation on a particular machine and hence from certain resource
constraints such as the number of processors and communication costs, and (ii)
the assignment of the tasks in the algorithm to the processor elements of a
particular machine. The latter step is called scheduling, which may be either
static or dynamic, depending on whether the scheduling is done by the compiler
or is done at run time. (See the papers in Shirazi et al. (1995) for an overview of
static and dynamic scheduling.) In this paper, we perform both the design of the
high-level algorithm and the static scheduling. In general, these two steps cannot
be completely separated because the optimal way to decompose computation
problems in step (i) typically depends on step (ii).

.

114 T. Van Zandt

To be effective, static scheduling requires good estimates of the execution
times of the tasks and the communication delays, and these should not be data
dependent. Furthermore, this information must be provided to the compiler. While
these conditions might be satisfied by a single computation job, they would
rarely be satisfied by a flow of jobs that are submitted to run on a multi-purpose
system. Such calculations are likely to be random both in the type and size
of each calculation and also in the arrival time. Therefore, the scheduling of
independent but overlapping jobs is usually done by dynamic scheduling, which
is also referred to as (dynamic) load balancing. Whereas static scheduling can
be quite fine-grained, meaning that the tasks are highly decomposed and the
scheduling involves assigning each operation to a processor, fine-grained dynamic
scheduling typically is not practical, and dynamic scheduling may simply involve
the assignment of entire jobs to servers in a network.

Our model, which has a flow of calculations, is amenable to static schedul-
ing because the jobs are homogeneous in type and size and because the inter-
vals between jobs are deterministic and constant over time. Those who study
static scheduling for the sake of designing compilers would find this special case
uninteresting, because the compiler should be able to handle a wide range of
jobs. However, an organization typically is not a multi-purpose machine ready
to process information for outside clients. Instead, like the networks in this pa-
per, the organization’s administrative structure and the procedures the agents in
that structure follow are designed to handle the anticipated recurring information
processing tasks that are part of controlling the organization. While real-time
control, as in Radner and Van Zandt (1992), Van Zandt and Radner (1997) and
Van Zandt (1997a,b), is an even more accurate model of an organization’s in-
formation processing activity, and while a real organization’s activities are far
from deterministic and perfectly anticipated, this model of periodic computa-
tion is simple but still captures the ongoing nature of information processing in
organizations.

The simplicity of associative computation along with the periodicity of the
arrival of jobs is also what allows us to obtain exact results about fully optimal
networks; these results include a characterization of a class of networks that
span the entire efficiency frontier with respect to delay and processing costs and
a characterization of the interprocessor communication in these networks. Finding
exact solutions to simple problems is also done in computer science, but it is more
common to pursue approximate results for more complex problems. Approximate
results might take the form of asymptotic bounds on parallel complexity or the
design of parallel algorithms or scheduling procedures that are shown either
analytically or through simulations to have performance that is within a fixed
ratio of the optimum. This is particularly true for the static scheduling of a
single job, for which finding the optimum is known to be NP-complete. As an
indication of how special and simple the scheduling problem we study is (in
spite of the fact that there is a flow of jobs, there are some communication costs,
and the registers represent local memory), we find that optimal schedules can be
calculated in polynomial time (see Sect. 5).

.

Periodic associative computation: Efficient networks 115

Appendices: Proofs
A Characterization of MS networks

It is recommended that all of Sect. 3 be read before proceeding with the proofs
in this appendix.

In this appendix, all networks are essential one-shot networks. For such a
network (Q, J) and for manager g € Q, we use the following notation:

b(q)=cycle in which g begins (execution time of g’s first LOAD).
c(q)=cycle in which g finishes (execution time of g’s last message).
w(g)=number of operations performed by g.

d(q)=duration of q; d(q) = c(q) — b(q).

We will also denote some one-shot networks with primes or subscripts (e.g.,
(Q',J")), in which case primes or subscripts are added to the above notation
(e.g., b’, ¢’, d’ and w’, and also D’, Q' and W’).

Remark A.1 Since the last instruction a manager g executes in an essential
network is a message, she performs no operation in cycle c(g). Therefore,
w(q) < ¢(q) — b(q) and w(q) = c(q) — b(g) if and only if g is not idle be-
tween cycles b(qg) and c(q).

Proof of Theorem 3.1. Let (Q, J) be an essential network with size Q and delay
D. We prove (Step 1) that PO = (P1-P4) and then (Step 2) that (P1-P5) = PO.
The proofs of all lemmas are given after the proof of this theorem.

Step 1. We first show —=P1 = —PO: Suppose that (Qp, Jp) is not simple.
To show that (Qg, Jo) is not a maximum-slack network, we should construct
a network with the same number of managers as (Qp, Jo) that has more slack.
The concatenation of tasks shown in Fig. 1 and that is the basis of Lemma 3
in Meagher and Van Zandt (1997) can result in a network with fewer managers,
because when one manager’s SEND is eliminated, another manager’s operation
is also eliminated. Therefore, we instead use the concatenation that is shown in
Fig. 2 and that is the basis of Lemma 2 in Meagher and Van Zandt (1997). In this
case, when a manager’s SEND is eliminated, the manager’s previous operation
is transferred to the manager who processes the SEND.

Lemma 2 in Meagher and Van Zandt (1997) is stated in terms of concatenating
tasks in a simple network. To apply this lemma, we first construct a simple
network (Q;,J;) by reassigning all but the last of each manager’s tasks in
(Qo, Jo). Reassignment of tasks is described in Remark 2.1; there is an obvious
isomorphism between the tasks in (Qy, Jo) and (Q;, J1) such that the instructions
in corresponding tasks differ only by the name of the manager who executes
the instructions. This particular construction of a simple network is given in
Definition 4.1, and is such that Qy C Q; and for ¢ € Qp, ¢’s unique task in
(@1, 1) corresponds to g’s last task in (Qg, Jo)-

According to Lemma 2 in Meagher and Van Zandt (1997), we can iteratively
concatenate all tasks in (Qp, ;) that are performed by the same manager in

116 T. Van Zandt

(Qo, Jo). as no two of these tasks can be active at the same time. As constructed
in that lemma, we thereby obtain a simple network (Qp, J2) such that, for all
q € Qo, c2(q) = co(g) and wy(g) < wo(g), with a strict inequality if g has
multiple tasks in (Qp, Jo). Apply Lemma A.l below to (Qp, J2) to obtain a
continuous, simple network (Qy, J3):

Lemma A.1 Suppose (Q, J) is simple. Then there is a continuous simple network
(Q,J") the same size and delay as (Q, T), such that ¢'(q) = c(q) and w'(q) =
w(q) forall g € Q.

Then, for g € Qy, c3(q) = co(q) and b3(q) = colg) — wa(q) = co(q) — wo(q) >
bo(q). As the first strict inequality is strict if g has multiple tasks in (Qp, Jo),
the network (Qo, J3) has more slack than (Qg, Jp).

To complete this step, we invoke Lemma A.2, which shows that P1 A(—P2V
-P3 Vv —-P4) = —PO:

Lemma A.2 Suppose (Q, J) is simple but does not have Property P2, P3 or P4.
Then there is a simple network {Q, J') with the same size and delay as (Q, J)
such that d'(q) <d(q)Vq € Q 3 cob'(q) >3 cob(q) and 3, w'(q) =
2 geo (@)

Step 2. The key to this step is to show that networks that satisfy Properties
P1-P5 attain an upper bound on how late managers finish. Since also simple
networks have the fewest operations of networks of the same size and networks
with continuous tasks have the least idle time within tasks, networks that satisfy
P1-P5 have maximum slack. To begin the proof, define the following property
for a network (Q, J) with Q managers and delay D:

P6. For s € {0,1,...,D}, exactly min{Q, 2°} managers finish in or after cycle
D —s.

Remark A.2 An equivalent statement of P6 is that one manager finishes in cycle
D, 25~ managers finish in cycle D — s for 1 < s < [log, @], Q — 2/"°&: 21-1
managers finish in cycle D — [log, Q7], and no managers finish in earlier cycles.

Lemma A.3 For s € {0,1,... ,D}, at most min{Q,2*} managers finish in or
after cycle D — s.

Lemma A4 If (Q,J) satisfies P1-P5, then it satisfies P6.
Lemma A5 If (Q,J) satisfies P1, P2 and PG, then it satisfies PO.

(P1-P5) = PO then follows from Lemmas A.4 and A.5. O

Proof of Lemma A.1. We can weakly increase the execution times of each man-
ager’s operations, without changing the order of the manager’s instructions, so
that the manager is not idle between when the manager begins and when he
finishes. Each manager’s instructions still constitute a task. Because we have not
changed the execution time of any message, each INPUT or SEND is executed

k4

Periodic associative computation: Efficient networks 117

before the operation that processes it. Hence, we have obtain a well-defined,
essential network (Q, J’) that is simple and continuous, such that, Vg € Q,

c'(q) = c(q) and w'(q) = w(g). o

Proof of Lemma A.2. P2. Suppose that (Q, J) is not continuous. The network
(Q,J") constructed in Lemma A.1 has the stated properties.

P3. Suppose that (Q,J) is not just-in-time. Then there is a manager g € Q
who has a SEND in cycle #, that is processed in cycle , > t;. We construct J’
from J by increasing the execution time of each of ¢’s instructions by #, — #
cycles. Because ¢’s message is then sent in cycle #;, which is when the message
is processed, it follows from Corollary 5.1 in Van Zandt (1997c¢) that (Q, J’) is
essential and has the same delay as (Q, 7). Observe that (i) d’(g) = d(g) and
b'(q) = b(q)+(t2—t1), and (ii) d'(q) = d(q) and b'(q") = b(q") for ¢’ € Q\{q}.
For example, compare the networks on the left side of Fig. 3 with those on the
right side.

P4. Suppose that there are managers q;, g, € Q such that manager g; performs a
postprocessing operation #; in cycle #; and manager g, performs a preprocessing
operation i, in cycle #, > #,. We first construct 7" from .7 by interchanging
the message ID’s a; and a; of i1 and i, respectively. Since a; is an INPUT
instruction, we can change its time of execution to #;. Message a; is a SEND
that is executed in or before cycle #; < t,. Hence, each message is still sent
before it is processed and (Q, J") is well-defined and essential. (For example,
compare the networks (Q, J') and (Q, J") in Fig. 3.) (Q, J") does not have
more slack than (Q, J), but it is not just-in-time. Since also the beginning times
and durations of the tasks are the same in (Q, J”) and (Q, J), it follows from
the preceding paragraph that there is a network (Q, J') with the stated properties.
(For example, compare the networks (Q, J’) and {Q, ") in Fig. 3.) O

Proof of Lemma A.3. Since (Q, J) is essential, each manager sends a message in
the cycle in which she finishes. One of these can be an OUTPUT instruction, and
the remainder are SEND instructions with parents that are operations. Hence, (*)
if K managers finish in cycle D —s, then at least K — 1 operations are performed
during or after cycles D — s.

Since no operations are performed during or after cycle D, at most 1 manager
finishes in cycle D (the manager who performs the OUTPUT instruction) and
hence, the proposition holds for s = 0.

We conclude with the following inductive step. Suppose that 0 < s < log, Q
and for r = 0,... ,s, no more than 2" managers finish during or after cycle D —r,
and hence no more than 2" managers are busy during cycle D — r — 1. Then no
more than 20+ .- - +2° = 25*1 — | operations are performed during or after cycle
D — (s +1), and by (), at most 2°*! managers finish in or after cycle D — (s +1).
(The proposition holds for s > log, @, because then min{Q,2°} = Q.) o

Proof of Lemma A.4. Suppose that (Q, J) satisfies P1-P5.

.

118 T. Van Zandt

Since only the manager who executes the OUTPUT instruction finishes in
cycle D and no manager finishers after cycle D, 1 = min{Q, 2°} manager finishes
in or after cycle D.

Inductive step: Now suppose that 0 < s < log, Q@ and exactly 2° managers
finish in or after cycle D — s. Consider two cases:

Case 1. Suppose that some manager preprocesses in cycle D — (s +1). P4 implies
that no manager postprocesses before cycle D — (s + 1). Since (Q, J) is just-in~
time (P3), no manager finishes before cycle D — (s + 1). Hence, all Q managers
finish in or after cycle D — (s + 1). By Lemma A.3, this implies that (s + 1) >
[log, @1, and hence Q = min{Q,2°*'}.

Case 2. No manager preprocesses in cycle D —(s+1). Since s < log, Q, it follows
from Lemma A.3 that some managers finish before cycle D — s. Since (Q, J)
is strongly overlapping (P5), no managers begin after cycle D — (s + 1). Since
(Q, J) is continuous (P2), the 2° managers who finish in or after cycle D —s are
busy in cycle D — (s + 1). By assumption, they are postprocessing. Since (Q, J)
is just-in-time (P3), 2° managers finish in cycle D — (s + 1), and so 2°*! managers
finish in or after cycle D — (s + 1), and it must be that 2°*! = min{Q,2*'}. O

Proof of Lemma A.5. Let {(Q, J) and {Q', J') be networks with Q managers and
delay D. Let W and W’ be the number of operations in [and J’, respectively.
Assume that (Q, J) satisfies P1, P2 and P6.

It follows from Remark A.l1 and the assumption that (Q,) is continuous
that

A W=D c@-blg ad W <Y g)-bg).
q9€Q ” q€Q’

Since in an essential network every manager sends a message and the number
of postprocessing operations equals the number of SEND instructions, and since

(Q,J) is simple,

(A2) W=N+Q-1<W'.

Combining (A.1) and (A.2):

(A3) > elg)—bg) < Y c'(g)—b(g) .
q€Q q€Q’

Lemma A.3 and the assumption that (Q, J) satisfies P6 imply that 3 qe0 €(@) 2
ZqGQ’ ¢’(g); combining this with (A.3) we have

dob@) =) bg).
q9€0 q€Q’
Hence, (Q, J) has as much slack as (Q', J"). O

Proof of Proposition 3.3. Any network is weakly dominated by an efficient net-
work (Q, J), which is simple. Let Q be its size and D be its delay. Let (Q, J’)

‘

Periodic associative computation: Efficient networks 119

be a network with the most slack of those with size Q and delay D. (Q,J’)
is thus a maximum-slack network and must be simple (as shown, e.g., in Step
1 of the proof of Theorem 3.1). Hence, it has the same number of operations
as (Q,J) and is also efficient. As shown in Meagher and Van Zandt (1997),
efficient networks are strongly overlapping. Hence, (Q, J’) is an MS network.
Let (Q,J) be an efficient network and let (Q, J’) be an MS network that
weakly dominates (Q, 7). Then both networks have the same number Q of
managers and the same delay D = D*(Q,N). If also Q + N mod Q, then it
follows from Lemma A.6 below that (Q,J’) has zero slack. Hence, (Q,J)
must also have zero slack, and it is a maximum-slack network. Since (Q, J) is
efficient, it is strongly overlapping, and hence is an MS network. O

Lemma A.6 There is an MS network with Q managers and delay D if and only
if 0 +2M°%21 < N and D > D*(Q,N). An MS network with Q managers and
delay D has zero slack if and only if D = D*(Q,N) and Q + N mod Q is a power
of 2.

Proof. First we show that if there is an MS network with size Q, then Q +
2 [log, 01 < N. From Theorem 3.1 and Lemma A.4, the first manager to finish in
an MS network of size Q does so in cycle D — [log, Q]. Since the MS network
is strongly overlapping, each manager has at least 2 operations before this cycle
for a total of 2Q operations. Furthermore, since the network satisfies P6 and is
continuous, 2°~! managers are busy in cycles D —s fors = 1,... , [log, @], for
a total of 2/1082 21 _ | operations. Hence, the network has at least 2Q +2102.21 — |
operations. Since the network is simple, there are N + Q — 1 operations, and so
N+Q—1>20+2M18Q1 _1 or N > Q +20eQ1,

If an MS network has Q managers and delay D, then D > D*(Q, N), since
D*(Q,N) is the minimum delay of any network with Q managers.

For the converse, suppose that 0+2M°6: 21 < N and D > D*(Q, N). Consider
the construction of an MS network with size Q and delay D in Remark 3.2. It is
well-defined as long as it is possible to divide the N — (2'°& 21 — Q) items that
must be preprocessed in the first D — [log, Q] cycles among the Q managers so
that each manager has (i) at least 2 items and (ii) no more than D — [log, Q]
items. Since Q+2/°& 21 < N, N —(2[°&21__0Q) > 20, and so (i) is possible. For
(ii), it is necessary and sufficient that the number Q(D — [log, Q1) of available
manager-cycles be as large as the number of items to be processed; i.e., that

S =Q(D - [log, Q1) — (N — 2M&2l _ gy >o0.

Note that if this holds (S > 0), then S is the slack of the MS network. We
conclude by showing that § > 0 if D > D*(Q,N) and S = O if and only if
D =D*(Q,N) and Q + N mod Q is a power of 2.

Recall that D*(Q,N) = [N/Q] + [log,(Q + N mod Q)], and note that N —
Q|N/Q] =N mod Q. Then S = Q(D — D*(Q,N))+ S*, where

S* = Q([logy(Q + N mod Q)] — [log, Q1) +2M°& 21 — (0 + N mod Q) .

‘

120 T. Van Zandt

We need to show that $* = 0 if Q + N mod Q is a power of 2 and §* > 0
otherwise. If Q+N mod Q is a power of 2, then, since N mod Q < Q, [log, Q] =
log,(Q+N mod Q) and 2M°&:21 = 0 +N mod Q. Hence, §* = 0. Suppose instead
that Q + N mod Q is not a power of 2. If also [log,(Q +N mod Q)] = [log, 0],
then 2/°2:21 > Q+N mod Q. Hence, S* > 0. Otherwise, [log,(Q+N mod Q)] —

[log, Q] =1, and
S*=Q+2M2 _(0+NmodQ)>Q—NmodQ >0. o

B Characterization of efficient replication networks

See the notation for one-shot networks at the beginning of Appendix A.

Definition B.1 Let (M, TI) be a replication of a simple network (Q,J), with
task assignments {cr} . (M,T) is said to be a cyclic replication of (Q,)
if there is a permutation r : @ — Q, called the task rotation, such that for each
task q € Q, after a manager m finishes task q for a cohort T € T, manager
m begins task r(q) for the next cohort in which task r(q) begins, i.e., for cohort

7+ [(c(q) — b(r(@)/T1T.

Lemma B.1 If (M, T) is a replication of a simple network (Q, J), then there is
cyclic replication of (Q, J) with the same delay and as few managers as (M, I).

Proof. We avoid heavy notation, as it would not clarify the simple argument.

Recall from Remark 2.1 that we can reassign tasks in an essential network
as long as in the resulting network no manager performs two tasks that are
active during the same cycle. Therefore, the minimum number of managers in a
replication of a simple network (Q, J) is equal to the maximum number M of
tasks that are active in any cycle.

We can imagine that each manager in a replication network stands in a queue
when he is not performing an active task. If there are M managers, then in each
cycle ¢ there are always enough managers in the queue to be assigned to the tasks
that begin in cycle 7. By putting managers in the queue and assigning them tasks
in an order that depends only on the tasks, we can ensure that the replication is
cyclic.

For example, let the queue be FIFO. Initially, all managers are in this queue
in arbitrary order. Order the set Q of tasks in the one-shot network linearly. In
each cycle ¢, managers who complete tasks in cycle ¢ are added to the queue in
the order of the tasks that they complete. Then tasks that begin in cycle ¢ are
assigned managers from the queue in the order of the tasks. Once the first cohort
has been processed, a steady state in terms of managers who are busy in each
cycle, modulo 7, is reached. Each time a task g € Q is completed, the size of
the queue is the same, the tasks that finish in that cycle are the same, and the
tasks that begin in subsequent cycles are the same. Hence, after completing task
g, the time a manager is idle and the next task to which the manager is assigned
is invariant to the identity of the manager and to the cohort for which the task

“

Periodic associative computation: Efficient networks 121

is completed. Hence, the network is cyclic as long as managers begin their next
assigned task for the first cohort in which that task begins. The latter condition
holds because M equals the maximum number of tasks that are active in any
cycle. For if there were a task g such that each time a manager completed g, he
would be idle for T more cycles, then there would never be a cycle in which all
managers are performing active tasks. a

Remark B.1 Let (Q, J) be a simple network and let (M,Z) be a cyclic repli-
cation of (Q,J) with task rotation r. For ¢ € Q, let z(g) be the number of
cycles a manager who finishes task g is idle before beginning task r(q). Then
z(q) = (b(r(q)) — c(q)) mod T. Furthermore, MT = qug d(q) +z(q).

Proof of Proposition 4.1. By Lemma B.1, we can assume that (M, Z) is a cyclic
replication of a simple network (Q, J), with task rotation r. To simplify notation,
write @ = {1,...,Q}; these names conflict with those of the data sources, but
no confusion should arise during 'this proof.

According to Lemma 1 in Meagher and Van Zandt (1997), if (Q, J) contains
a task g; with a single operation, then task g; can be eliminated. That is, there
is a network (Q’, J') such that Q" = Q\ {1} and ¢’(g) = ¢(g) and b'(q) = b(q)
for g € Q'. If r(q1) = q1, then the cyclic replication of (Q’, J’) with the task
rotation r’ = r|g. has fewer managers than (M, Z) because all the managers who
perform task g, are eliminated. Otherwise, let g, be the task such that r(g2) = g;.
Define the task rotation r’': Q — Q by r’(q2) = r(q1) and r'(q) = r(q) for
q € 9\ {g1,92}, and let (M’ T’) be the cyclic replication of (Q’, J') with
task rotation r’. The remaining tasks have the same duration in {(M’,Z’) as in
(M, I) and managers who are assigned task g, pass directly to r(g;) rather than
from ¢, to q; to r(q;). Hence, (M’,T’) has no more managers than (M,T).
Specifically, by Remark B.1, we have

MT —M'T = z(q1) + 2(q2) + d(q1) — 2’ (q2)
and

2'(q2) = (b(r(q1) — c(g2)) mod T
(b(r(q1)) —c(g)) mod T + (b(q1) — c(g2)) mod T
+ (c(q1) — b(q1)) mod T

< z(q1) +z(g2) +d(qy) -

IA

Therefore, in the rest of this proof we assume that all tasks in (Q, J) have at
least two operations.

(M, I) is not semi-stationary if and only if the permutation r has a cycle of
length greater than 1. Suppose this is true. Then we can renumber the tasks, if
necessary, so that there is K € {2,...,Q} such that

r()=2, r2)=3, ..., rK)=1

and b(1) < b(2). Consider three exhaustive cases:

‘

122 T. Van Zandt

1. b2) > (1) .
2. (b(2) —c(1)) mod T > (b(1) — ¢(1)) mod T .
3. b(2) < c(l) and (BQ2) —c(1)) mod T < (b(1) — c(1) mod T .

In each case, we find a new simple network (Q', J’) with delay D, and
a cyclic replication (M’,I") of (Q’, J’) with task rotation r’ that has as few
managers as (M, Z), such that

(B.1) #q' € QIr'@)#4'} <#q e Qr@) #4} .

(M',T') is semi-stationary if and only if #{q’ € Q'|r'(g") # q'} = 0, which
must be true after finitely many such transformation.

Case 1. We can apply Lemma 2 in Meagher and Van Zandt (1997), as illustrated
in Fig. 2, to concatenate tasks 1 and 2 and thereby construct a network (Q’, J')
that has the same delay and one less operation than (Q,), such that Q' =
{2,...,0} and such that:

1. Vg € Q\ {1,2}: b'(q) = b(g), ¢'(g) = c(g) and w'(g) = w(q).
2. b'(2) = b(1), ¢'(2) = ¢(2) and w'(2) = w(l) + w(2) — 1.

Let (M’,Z’) be a cyclic replication of (Q’, J’) with the task rotation r’, where
r’ is like r except that after task K, managers just perform the combined task 2
instead of task 1 and then task 2. That is, r’ : Q" — Q' is defined by r'(q) = r(q)
forqg € @'\ {K} and r'(K) = 2.

It is possible that (2) — ¢(1) > T, in which case a manager who completes
task 1 in (M,Z) starts task 2 for an earlier cohort, so that he is still idle
less than T cycles between tasks 1 and 2. In (Q’, J’), this gap b(2) — c(1)
may appear as idle time within the combined task ¢,. However, by Lemma A.1
we can increase the execution time of some of the instructions in task 2 if
necessary so that ¢’(2) = ¢(2) and d’(2) = w'(2) < d(1)+d(2). To simplify some
calculations below, assume that d’(2) = d(1) + d(2). (If (M’,Z’) has no more
than M managers under this assumption, then it has no more than M managers
when d’'(2) <d(1) +d(2).)

Given that b(q) = b'(q) and c(q) = c'(q) for ¢’ € Q\ {1,2} and given the
definition of r’, we have d(q) = d’'(q) for ¢ € Q\ {1,2} and z(q) = z'(q) for
q € Q\ {1,K}. Since also d’(2) = d(1) + d(2), by Remark B.1 we have

MT —M'T=z(1)+z(K)—2z'(K) .

It follows from d’(2) = d(1) +d(2) that b'(2) = b(2) — d(1) = b(2) — c(1) + b(1).
Hence,

Z/(K) = 'Q)—c'(K)modT
= b2 —c(1)+b(1)—c(K)) mod T
< b@Q)—c())ymod T + (b(1) —c(K)) mod T

z()+z(K) .

‘

Periodic associative computation: Efficient networks 123

Therefore, MT > M'T and (M’,T’) has as few managers as (M,T). Further-
more, (Q’, J') has one less task than (M, T), and so (B.1) is satisfied.

Case 2. The time (b(2) — ¢(1)) mod T a manager is idle when passing from
task 1 to task 2 is greater than the time (b(1) — ¢(1)) mod T a manager would
be idle passing from task 1 to task 1 instead. We can thus weakly improve the
network by having managers rotate from task 1 to task 1 and from task K to
task 2. This is illustrated in Fig. 9.

Manager Rotation r:
1 3 2 Cycle ()
0«7 z 2
—: i o@ioWso
-—r o+ § 0 0
H ' \ 2 \. J
LA 7
4 101 1 Rotation r':
: 0 4)
i - 1
@ oo
1
\. J

Fig. 9. Separating a task from a rotation cycle, as in case 2 of the proof of Proposition 4.1. The
network on the left is the one-shot network that is replicated. The graphs on the right show two task
rotations, with the idle between tasks shown on each arc. Task rotation r’ has the same idle time as
r, but the length of the cycle is less.

Explicitly, let r'(1) =1, r'(K) =2, and r'(q) = r(q) for ¢ € Q\ {1,K}. Let
(M',T') be a cyclic replication of (Q, J) with task rotation r’. The length of
each task is unchanged and z'(q) = z(g) for g € @\ {1,K}. Therefore,

MT -M'T = z()—-zZ/)+z2(K)—z'(K)
(B.2) = (@ —c(1)mod T — (b(1) = c(1)) mod T
+ (1) —c(K)mod T — (b(2) — c(K)) mod T .
Recall that for arbitrary integers x, y and z, with z > 0,

((xmodz)—(ymodz))modz =(x —y)mod z .

Thus, if
(xmod z) —(ymodz) >0,
then
(B.3) (xmodz)—(ymodz)=(x—y)modz .
Otherwise,
(B.4) (xmodz)—(ymodz) <0< (x —y)mod z .

From (B.3) and the assumption in this case that (b(2) — ¢(1)) mod T >
(b(1) — ¢(1)) mod T, we have

“‘

124 T. Van Zandt

(B.5)
b2 —c(1) mod T — (b(1) — (1)) mod T = (b(2) — b(1)) mod T .

From (B.3) and (B.4), we have
(B.6)
®GR2)—b(1) mod T > (b(2) —c(K)) mod T — (b(1) —c(K)) mod T .
Therefore, by (B.2), (B.5) and (B.6), MT — M'T > 0, and (M’ ,Z’) has as
few managers as (M, Z). Note also that (B.1) holds.

Case 3. We shift some of task 1’s operations to task 2, so that the beginning
times of tasks 1 and 2 are interchanged. Then, when we have managers rotate
from task 1 to task 1 and from task K to task 2, the idle time following each
task is the same as in the original network. This is illustrated in Fig. 10.

Manager Manager
1 3 2 Cycle 1 3 2 Cycle
{ : 3 [: 3
“—r O+ - -—r 4 -
H H H 2 H H 1 2
+ 0+ - I -
H H 1 : : 1
+ A - i + -
i 0 Po0
Network (Q, J) Network (Q, J’)
0
oo | |@ e
0 0 0
Rotation r Rotation 7’
Fig. 10. Shifting operations to reduce a reassignment cycle, as in Case 3 of the proof of Proposition

4.1

Explicitly, let (Q, J’) be the network like (Q, J) but in which task 2 per-
forms the operations performed by 1 in (Q,J) in cycles b(1),...,b(2) — 1,
and 2’s LOAD in cycle 5(2) is changed to ADD and 1’s ADD in cycle b(2) is
changed to LOAD. This is well-defined because we numbered the tasks so that
b(1) < b(2) and because in this case b(1) # b(2). Task 1 still performs an oper-
ation since c(1) > b(2). Thus by Corollary 5.1 in Van Zandt (1997c), (Q, J') is
essential and has the same delay as (Q, J). Furthermore, each task begins and
finishes at the same time in (Q, J’) and (Q,.7), except that b'(1) = b(2) and
b'(2)=b(1). Let /(1) =1, r'(K)=2, and r'(q) = r(q) for g € @\ {1,K }. Let
(M',T") be a cyclic replication of (Q', J’) with task rotation r’. Now

b'(r'(K) =b'(2)=b(1) =b(r(K)) and b'(r(1))=b'(1)=5b(2)=b(r(1)),

and thus z'(q) = z(q) for g € Q. Also, d’(1) =d(2), d'(2) = d(1) and d'(q) =
d(q) for g € Q\ {1,2}. Therefore, by Remark B.1, MT = M'T, and (M',T")
has the same number of managers as (M, Z). Note also that (B.1) is satisfied. O

<

Periodic associative computation: Efficient networks 125

Proof of Proposition 5.1. 1. The idle time for each task in a semi-stationary
replication is at most T — 1 cycles. Therefore, the semi-stationary replication of
an efficient one-shot network with delay D has at most
N+Q*(D,N)—1+Q*(D,N)(T -1)
T)

managers, and so

M*(D,N,T)—-M(D,N,T) < (T - DO*(D,N) < T-1 '
M}D,N,T) ~N+Q*D,N)—-1~3-2/N

The second inequality follows from the fact that Q*(D,N) < N /2. Rearranging

(B.7) yields (5.1).

2. Suppose that N, D and T are such that N /Q*(D,N) > T+1. Then, compared
to the replication of an MS network with @Q*(D,N) tasks, we can add up to
Q*(D, N) tasks, having each one preprocess a multiple of T items, so that no
manager with one of the new tasks is idle. Each new task creates at least 7 — 1
cycles of slack, because it preprocesses at least T items but creates an extra
partial sum to be added by the other managers. The idle time of one of the
original tasks can be eliminated by creating at most T — 1 cycles of slack, and
hence it is possible (in fact, optimal) to eliminate all the idle time except perhaps
up to T — 1 cycles by adding at most

Q*(D,N)T — 1)
(N/Q*(D,N)—-T
additional tasks. The resulting network has at most T — 1 idle cycles per cohort,
so that

(B.7)

. Q*(DNYT—1)
M*D,N,T)-M;(D,N,T) _ <(N/Q*(D,N))—T +T - 1)

MXD,N,T) - (N+Q*D,N)-1)
which converges to 0 at a rate O((Q*(D,N)/N)?) if N — oo, D — oo and
Q*(D,N)/N — 0.
3. Suppose that
(N/Q*(D,N) = (N /Q*(D,N) mod T) > VN — 1

(roughly, Q*(D,N) > +/N). Then with (T — 1) additional tasks we can create at
least (T—1)VN manager-cycles of slack, and only Q*(D,N)(T—1) < (T— DVN
manager-cycles of slack are needed to eliminate all the idle time of the original
tasks. Thus, by adding at most 7 — 1 tasks we can eliminate all the idle time
except at most 7 — 1 manager-cycles, so that

M*(D,N,T) - [M/(D,N,T)]

L | N+@QOM+T-D-D+T-D| _N+Q*(D,N)-1
= T T

- [Z(T—l)J

= T

< 1. 0

126 T. Van Zandt

List of symbols

Cohorts

t Index for cycles (t =0,1,...).

T Set of cycles in which cohorts arrive.

T Index for cohorts (7 € T).

T Number of cycles between cohorts in periodic mode.
N Number of items per cohort.

N Set of data sources (N = {1,... ,N}).

n Index for items in a cohort (n € N).

Networks

M/Q Set of managers in a periodic/one-shot network.
m/q A manager in a periodic/one-shot network.

/T Set of instructions in a periodic/one-shot network.
i An instruction in a network.

H Task.

One-shot networks

b(q) Cycle in which manager g begins.
c(q) Cycle in which manager g finishes.
d(q) Duration of ¢ : d(q) = c(q) — b(q).
w(q) Number of operations performed by g.

Replication networks

ar Task assignment for cohort 7 in a replication network.
z(q) Idle time after task g in a cycle replication network.
r(gq) Task rotation in a cyclic replication network.
Performance

D Delay of a network (D € Nor D : T — N).

M/Q Number of managers in a periodic/one-shot network.
w Number of operations in a one-shot network.
D*(Q,N) Minimum delay for one-shot networks with O managers.
Q*(D,N) Minimum size of one-shot networks with delay D.
M*(D,N,T) Minimum size of replication networks with delay D.
M}(D,N,T) A lower bound on M*(D,N,T).

References

Bolton, P., Dewatripont, M. (1994) The firm as a communication network. Qu. J. Econ. 109: 809-839

Keren, M., Levhari, D. (1979) The optimum span of control in a pure hierarchy. Manag. Sci. 11:
1162-1172

Keren, M., Levhari, D. (1983) The internal organization of the firm and the shape of average costs.
Bell J. Econ. 14: 474486

Keren, M., Levhari, D. (1989) Decentralization, aggregation, control loss and costs in a hierarchical
model of the firm. J. Econ. Behav. Organ. 11: 213-236

Meagher, K., Van Zandt, T. (1997) Managerial costs for one-shot decentralized information process-
ing. Australian National University and Princeton University

Mount, K., Reiter, S. (1990) A model of computing with human agents. The Center for Mathemat-
ical Studies in Economics and Management Science, Discussion Paper No. 890, Northwestern
University, Evanston, Illinois

.

Periodic associative computation: Efficient networks 127

Radner, R. (1993) The organization of decentralized information processing. Econometrica 62: 1109-
1146

Radner, R., Van Zandt, T. (1992) Information processing in firms and returns to scale. Ann. Econ.
de Statist. 25/26: 265-298

Reiter, S. (1996) Coordination and the structure of firms. Northwestern University

Shirazi, B. A., Hurson, A. R., Kavi, K. M. (eds) (1995) Scheduling and Load Balancing in Parallel
and Distributed Systems. IEEE Computer Society Press, Los Alamitos

Van Zandt, T. (1996) Organizations with an endogenous number of information processing agents.
In: M. Majumdar (ed.) Organizations with incomplete information. Cambridge University Press,
Cambridge

Van Zandt, T. (1997a) Real-time decentralized information processing as a model of organizations
with boundedly rational agents. Review of Economic Studies (Forthcoming)

Van Zandt, T. (1997b) Real-time hierarchical resource allocation. Princeton University

Van Zandt, T. (1997¢c) The scheduling and organization of periodic associative computation: Essential
networks, I. Rev. Econ. Design 3: 15-27

Van Zandt, T., Radner, R. (1997) Real-time decentralized information processing and returns to scale.
Princeton University and New York University

Zomaya, A. Y. (Ed.). (1996) Parallel and distributed computing handbook. McGraw-Hill, New York

