The effect of WTO on the extensive and the intensive margins of trade

Pushan Dutta a,⁎, Ilian Mihova,b,1, Timothy Van Zandtb,c,2

a INSEAD, 1 Ayer Rajah Avenue, Singapore 138676, Singapore
b CEPR
c INSEAD, Boulevard de Constance, 77305 Fontainebleau CEDEX, France

A B S T R A C T

We use 6-digit bilateral trade data to document the effect of WTO/GATT membership on the extensive and intensive product margins of trade. We construct gravity equations for the two product margins motivated by Chaney (2008). The empirical results show that standard gravity variables provide good explanatory power for bilateral trade on both margins. Importantly, we show that the impact of the WTO is concentrated almost exclusively on the extensive product margin of trade, i.e. trade in goods that were not previously traded. In our preferred specification, WTO membership increases the extensive margin of exports by 25%. At the same time, WTO membership has a negative impact on the intensive margin. Based on novel comparative statics results about how fixed and variable trade costs impact the product margins of trade, our results suggest that WTO membership works by reducing primarily the fixed rather than the variable costs of trade.

1. Introduction

Since its inception in 1948, the General Agreement on Tariffs and Trade (GATT) has formulated and implemented the rules of world trade. The biggest overhaul of trading rules took place in the 1980s through the Uruguay Round of talks, and eventually led to the creation of the World Trade Organization in 1995. The agenda of the GATT/WTO has been to promote trade, reduce trade barriers through rounds of trade talks, and provide a venue for settling trade disputes.

However, its raison d’être as the promoter of world trade was cast in doubt by Rose (2004a), who found a negligible impact of WTO membership on the volume of bilateral trade. That paper spawned multiple follow-up attempts to validate or overturn Rose’s surprising result. For instance, Subramanian and Wei (2007) show that the impact of GATT/WTO depends on what the country does to promote trade, reduce trade barriers through rounds of trade talks, and provide a venue for settling trade disputes.

Developing countries (e.g., India) enjoyed special exemptions in particular sectors (e.g., textiles) from the liberalization of trade; once these exemptions are accounted for, the WTO does promote trade. Tomz et al. (2007) argue that many countries are mistakenly classified as outside the GATT, even though they were de facto members with similar rights and obligations. They show that not counting such countries as GATT members systematically underestimates the effect of GATT on trade flows. Liu (2009) highlights the sample selection bias in the traditional gravity formulation: many country pairs exhibit zero trade, which the traditional formulation ignores by examining only strictly positive trade flows. Accounting for this, he finds a strong role for the WTO in initiating trade between non-trading countries—the so-called partner-level extensive margin of trade, as opposed to the partner-level intensive margin (increases in trade between partners that already trade with one another). Felbermayr and Kohler (2006) also emphasize the decomposition of the expansion of trade into partner-level extensive and intensive margins. Helpman et al. (2008) argue that the puzzle is reconciled with an accurate theory-driven specification of the gravity equation. Using unidirectional trade data along with exporter and importer fixed effects reveals a statistically significant positive effect of

⁎ Corresponding author. Tel.: +65 6799 5498.
E-mail addresses: Pushan.Dutt@insead.edu (P. Dutta), Ilian.Mihov@insead.edu (I. Mihov), timothy.van-zandt@insead.edu (T. Van Zandt).
1 Tel.: +65 6799 5434.
2 Tel.: +33 1 6072 4856.

0022-1996/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jinteco.2013.08.001
WTO membership on trade volumes. Eicher and Henn (2011) argue the opposite—that accounting for multilateral trade resistance terms via time-varying exporter and importer fixed effects suffices to negate WTO trade effects.⁴

Even if we believe that the WTO raises trade volumes, there still remains the question of whether the effect of the WTO is through liberalization of trade policies. Rose (2004b) questions the importance of trade liberalization by showing that few, if any, measures of trade policy correlate significantly with WTO membership. Furthermore, he reports that trade liberalization lags WTO entry by many years and that membership imposes few trade policy changes amongst many members, especially among developing countries who remain closed to trade for years following GATT/WTO membership. In contrast, Bagwell and Staiger (2001) argue that GATT/WTO is not merely about tariff concessions and rules for tariff policies. Rather, “the central purpose of WTO rules is to create a negotiating forum where member governments can voluntarily exchange market access commitments, with the assurance that the property rights over negotiated market access commitments are secure against unilateral government infringement.” In other words, GATT/WTO membership provides assurance of market access—that once foreign products enter a domestic market they will be accorded the same treatment as domestic products, and most importantly, governments will not take policy actions to undermine the promised market access. From this perspective, WTO membership creates certainty about market access and is more akin to a reduction in the fixed costs of trade.

Our paper attempts to clarify the role of the WTO by examining the effect of WTO membership on the extensive and intensive margins of trade. For the interpretation of our results, we turn to recent theory. A large number of trade models have emphasized the importance of firm-level productivity differences in trade patterns. These models arose out of empirical work showing striking firm-level differences in trading behavior (see Bernard and Bradford Jensen, 1995, 1999, 2004; Clerides et al., 1998; Aw et al., 2000; Eaton et al., 2004). Incorporating such firm-level heterogeneity into trade models leads first of all to a decomposition of trade expansion into an increase in the average exports by firms that are already exporters (the firm-level intensive margin) and the number of exporters selling in the destination market (the firm-level extensive margin). When firms produce differentiated products, these firm-level margins translate into product-level margins, which are the subject of our empirical study.

Multiple theoretical papers have then analyzed the consequences of trade liberalization, in terms of reduction of fixed and variable costs of trade, on these margins (Eaton and Kortum, 2002; Melitz, 2003; Bernard et al., 2003; Chaney, 2008). By examining the effect of WTO membership on these margins, we are able to evaluate whether the WTO works via a reduction in fixed costs or variable costs of trade. In order to link the predictions of these models to our empirical analysis, in an Appendix, we set up a variation of the model in Chaney (2008) that allows us to study its comparative statics more generally than under Chaney’s assumption that productivities are Pareto distributed.

Not surprisingly, a reduction in either fixed or variable costs leads to more entry into a bilateral export market and thus increases the extensive margin. Thus, if there is any hope of distinguishing between reductions in fixed and variable costs, it must be through their effect on the intensive margin.

A reduction in fixed costs typically reduces the intensive margin: the increase in entry, without any change in prices, leads to a dilution of the market shares of the incumbent firms, and the average exports per firm is brought down even further by the fact that the entrants are less productive and sell less than the incumbents.⁵

Does then, a reduction in variable costs instead increase the intensive margin? Incumbent firms see their revenues rise, but there is entry by firms with lower productivities and hence lowers sales than the incumbents. When productivities and hence revenues follow a Pareto distribution, the average does not change: this is Lawless (2010)’s result that the intensive margin is unaffected by a change in variable costs. We consider how this knife-edge result is likely to be perturbed for other distributions. For some plausible assumptions, such as a perturbation of the Pareto distribution that places an upper bound on firm productivity (that is, a lower bound on marginal costs), a drop in variable costs leads to an increase in the intensive margin. Sun et al. (2011) conclude that the Pareto distribution with unbounded productivities is a poor fit for the distribution of Chinese firms. Even more compellingly, this comparative statics arises if instead we introduce heterogeneity of fixed costs. For example, if lower-productivity firms have not only higher variable costs but also higher fixed costs, then again the intensive margin rises when variable costs fall.

In Section 2, as motivation we graph growth in trade in products that were already traded from 1962 to 1970 versus trade in newly traded products. This is a simple plot of time series. In Section 3, we perform two decompositions of the traditional gravity equation into an extensive and intensive product margin, which we use for our econometric analysis. The first, which is our baseline definition and which is linked to our theoretical model, decomposes the volume of bilateral exports into the number of products multiplied by average export per product (see Hillberry and Hummels, 2008; Bernard et al., 2007). The second follows the methodology of Feenstra and Kee (2008). The Feenstra–Kee extensive margin of exports for a country pair measures the fraction of goods sold by the exporter in the destination but weighs each product by its importance in world exports to this destination, averaged over time. The Feenstra–Kee intensive margin is the market share of the exporter in the importer’s total spending on the products the exporter sells there. The volume of bilateral exports equals the product of the two margins as a fraction of total imports in the destination country. Section 4 details the data sources and describes the other independent variables commonly used in the gravity equation specification. We use COMTRADE HS–6 data to decompose the total volume of trade into the extensive and intensive margins and examine how membership in the GATT/WTO influences these two margins of trade.

In Section 5, across gravity-based specifications for these margins, we show that the effect of WTO membership is mainly along the extensive product margin. In the most demanding specification (with time-varying importer and exporter fixed effects and country-pair effects) we find that the WTO raises the extensive margin by 25%. In contrast, regardless of the specification, WTO has a negative impact on the intensive margin of exports, reducing the intensive margin by 7%. This suggests that WTO membership works as a reduction of fixed rather than variable costs. We also find that the gravity specification is a good fit for explaining variations in the two margins, accounting for more than 75% of the variation in the margins in the most demanding specification. We perform a series of robustness checks to ensure that our main result is not too sensitive to reasonable variations in the specification. Importantly, we pay special attention to the zeros in the bilateral trade matrices, which if ignored will lead to biased results due to a sample selection bias and a heterogeneity bias, as emphasized by Helpman et al. (2008).

Our paper makes three contributions. First, it shows that the effect of WTO membership is mainly on the extensive margin and that it reduces

⁴ They question the hierarchical coding of trade preferences in Subramanian and Wei (2007) that attributes all trade creation to preferential trading arrangements (PTA). That is, if country pair are members of both a PTA and members of the WTO, the PTA dummy takes the value 1 while the WTO dummy takes the value 0.

⁵ This holds as long as the described mechanism is not undone by what is likely to be weak general equilibrium effect: the decrease in the fixed costs of the firms in the origin country increases their total profits; some of these profits could accrue to households in the destination country, with this extra income generating additional sales for each product sold there.
the intensive margin, suggesting that it mainly represents a reduction in fixed rather than variable trade costs. Broda et al. (2006) show that the extensive margin and the rise in imports of new varieties is responsible for important increases in productivity growth. The WTO, by facilitating such trade, has potentially large welfare effects. Second, our empirical results allow us to understand how well the theoretical predictions of the various new-new trade models are borne out in data that spans close to 100% of world trade. Finally, our decomposition allows us to evaluate how well the traditional gravity specification holds up in the data for the extensive and intensive margins.

2. A first look

We start with some descriptive evidence by plotting the evolution of world trade over time and then decomposing the volume of trade into extensive and intensive margins, similar to the decomposition in Helpman et al. (2008). Helpman et al. (2008) show the decomposition for the extensive partner margin (the rise of trade between new partners) rather than the extensive product margin (the rise of trade in new products). To ensure that we have sufficient coverage over time and across countries, we use data from the World Trade Flows Database (Feenstra et al., 2005). This database contains information on bilateral exports for more than 150 countries over the period 1962–1999. The data are based on the 4-digit Standard International Trade Classification, revision 2, with 790 4-digit categories and accounts for 98% of all world trade. Compared to more recent data from UNCTAD, these series are available only at a higher level of aggregation. While we revert to the more disaggregated data for our main empirical analysis, in this section, we use these series because they are available over a longer time frame, which helps identify important trends in international trade.

Line 1 in Fig. 1 shows the aggregate real volume of exports for the set of country pairs that had already positive exports prior to 1970. Line 2 shows the evolution of trade volume between these country pairs only in sectors where there was positive trade prior to 1970. We can think of this as the intensive margin of trade. The difference (plotted as line 3) shows the evolution of trade in sectors where there was zero trade at the beginning of the period within the set of countries that traded with each other prior to 1970. Line 3 captures the evolution of the extensive margin of trade. Fig. 1 strongly suggests that from the 1980s onwards, trade in sectors that these countries already had positive trade in 1970 remains relatively flat. At the same time, the growth in the overall trade volume is closely mirrored by the expansion of trade in new products. By 1999 more than half of the increase in trade was in goods that had not been traded in 1970.

At a minimum, this figure suggests that the extensive margin has played a very important role in the overall expansion in trade volumes,

3. Extensive and intensive margins of bilateral exports

3.1. Snapshot versus growth definitions of the margins

In most loose discourse about extensive and intensive product markets of trade, the extensive margin is referred to as growth in trade in newly traded goods whereas the intensive margin is growth in trade of already traded goods. In a static model, the “growth” is a comparative

6 Some trade gets classified at the 3-digit level but cannot be classified at the 4-digit level. We drop such trade. However, assigning it to fictitious sub-categories does not qualitatively affect our results.

7 In order to ensure that our results are not driven by the choice of initial year, we used the union of partners and sectors that had strictly positive trade at any time between 1962 and 1970.

8 The World Trade Flows Database has a significant discontinuity in 1984 where there was a change in the product classification system. This is responsible for the sharp increase around 1984 shown by the extensive margin (line 3) in Fig. 1. Even when we confine the sample period to 1984–1999, the importance of the extensive margin stands out.

statistics exercise. This is how Chaney (2008) decomposes his comparative statics of changes in total trade in response to changes in trade barriers.

However, in an empirical time-series exercise, these definitions of the extensive and intensive margins are problematic for two reasons. First, what is the moment in time that defines which goods are already traded? For our simple descriptive exercise in the preceding section, we loosely picked a time period. However, this does not work for an econometric exercise that examines how constantly-evolving independent variables drive trade flows. Second, there is natural churn of traded goods that would be present even if one otherwise fixed trade barriers and other bilateral determinants of trade. Change in technology and tastes leads some goods to disappear from trade flows and others to appear. In our descriptive exercise in the previous section, such hidden churn lowers the intensive margin and increases the extensive margin, compared to that generated solely by changes in barriers to trade.

Therefore, in empirical studies, these margins are defined not as growth terms but rather as snapshots, with the extensive margin being the number of goods traded (perhaps weighted) and hence capturing trade diversification, whereas the intensive margin is the average exports per product (perhaps weighted). These are the definitions that we adopt. In our baseline specification, we use unweighted measures, described in Section 3.2. As a robustness check, we also use the weighted measures of Hummels and Klenow (2005) and Feenstra and Kee (2008), described in Section 3.3.

3.2. Unweighted measures

In our main specification, the extensive margin is a simple count of the number N_{od} of products exported from o to d and the intensive margin $x_{od} = N_{od}/N_{od}$ is the average value of exports per product traded. Therefore, the overall volume of exports is the product of these margins:

$$X_{od} = N_{od} \cdot x_{od}$$

We estimate separate gravity equations for these margins, with WTO membership as one of the independent variables. Since the gravity specification is always implemented in terms of the natural log of trade volumes, the sum of the logged margins will equal the log of the aggregate bilateral exports. Moreover, the sum of the estimated coefficients for the two margins of any independent variable will equal the coefficient on that variable in a standard gravity specification, with total bilateral exports as the dependent variable.

Theoretical underpinnings for our gravity equations for these margins come from a variant of Chaney (2008), which is a model of heterogeneous firms that participate in bilateral trade. Chaney (2008) studies the margins as a comparative statics exercise, but in Appendix A we derive the gravity equations for the extensive and intensive margins as defined here. These are also derived in a similar way in Lawless (2010). The gravity functional form arises when the productivities (hence firm sizes) are assumed to follow a Pareto distribution.

One motivation for estimating the WTO’s impact on the extensive and intensive margins, rather than merely on total trade, is to disentangle whether entry into the WTO entails a reduction in fixed or variable trade costs. For this purpose, we study in Appendix B the comparative statics of reductions in trade costs in the model, but without the assumption of the Pareto distribution of productivities in Chaney (2008). This is an extension of Lawless (2010). A decrease in either the fixed or variable bilateral costs of trade leads to entry of new exporters, raising the extensive margin of trade. However, fixed and variable trade costs can have opposite effects from each other on the intensive margin.

When fixed costs fall, the resulting entry reduces the intensive margin because it dilutes the market shares of incumbent firms and it brings into the market less efficient firms that have lower revenues. The effect of a reduction in variable trade barriers is more complicated. One the one hand, it raises the exports of existing exporters, which increases
average exports per firm. On the other hand, it brings in less efficient firms. Their revenues will not be lower than the revenues of all the incumbent firms before the reduction in fixed costs, but they are still on the bottom of the distribution and they can bring the average revenue per firm down. These two effects cancel out when the firms’ productivity has a Pareto distribution, and so the variable trade costs have no effect on average exports per product. However, for some natural perturbations to the Pareto distribution or else if the more productive firms have not only lower variable costs but also lower fixed costs, then the intensive market rises. In these plausible cases, changes in fixed and variable trade costs have opposite effects on the intensive margin. This allows us to distinguish between whether WTO members entail a reduction in primarily fixed trade costs or variable trade costs.

3.3. Weighted measures (Feenstra–Kee)

As a robustness check, we consider alternative definitions of the extensive and intensive margins from Hummels and Klenow (2005) and Feenstra and Kee (2008). Feenstra (1994) and Feenstra and Kee (2004) provide microfoundations for the construction of these indices. The difference between these measures and our previous ones is that products are given weights for each destination country proportional to the total value of exports from all countries to that destination. The index \(X_{Wd}(j) \) stands for the average value of exports from country \(o \) to country \(d \) as a fraction of the total value of exports from all countries to country \(d \) in year \(t \).

Let \(J_{od} \) be the set of products exported by \(o \) to \(d \) in year \(t \) and let \(J_{Wd} = \{ j \in J_{od} \} \) be the set of all products exported to \(d \) from any country in any year in our sample. The index \(W \) stands for “world”, i.e., the ensemble of origin countries. Define \(X_{Wd}(j) \) as the average value of exports from the world (summed over all exporting countries and averaged across years) of product \(j \) to \(d \) from the world. This is the weight given to product \(j \) for bilateral exports from any origin country \(o \) to \(d \). Thus, the extensive margin of exports from country \(o \) to country \(d \) is

\[
EM_{od,t} = \frac{\sum_{j \in J_{od}} X_{od}(j) X_{Wd}(j)}{\sum_{j \in J_{od}} X_{Wd}(j)},
\]

(1)

With time-invariant weights, the measure of the bilateral extensive margin for a country pair changes over time only due to changes in the set of goods sold by \(o \) in the destination \(d \). The denominator is importer-specific and constant across exporting countries and time. The intensive margin of exports from country \(o \) to \(d \) is

\[
IM_{od,t} = \frac{\sum_{j \in J_{od}} X_{od}(j) X_{Wd}(j)}{\sum_{j \in J_{od}} X_{Wd}(j)},
\]

(2)

where \(X_{od}(j) \) is the value of exports from country \(o \) to country \(d \) of good \(j \) at time \(t \). The intensive margin equals \(o \)'s nominal exports relative to \(W \)'s average exports in those categories in which \(o \) exports to \(d \) at time \(t \) \((J_{od,t})\). Thus, it measures the overall market share country \(o \) has within the set of categories in which it exports to \(d \). Note that the product of the two margins is

\[
EM_{od,t} \times IM_{od,t} = \frac{\sum_{j \in J_{od}} X_{od}(j) X_{Wd}(j)}{\sum_{j \in J_{od}} X_{Wd}(j)} = \frac{X_{od,t}}{X_{d,t}}.
\]

which equals total bilateral exports from \(o \) to \(d \) in year \(t \) as a fraction of country \(d \)'s average imports. This implies that adding the coefficients on the extensive and intensive margins will yield the traditional gravity coefficients once we include importer country fixed effects which would then exactly capture the term \(X_{d,t} \). \[10\]

\[10\] The correlation between the count measure and the Feenstra–Kee extensive margin measure equals 0.86 and correlation between exports per product measure and the Feenstra–Kee intensive margin measure equals 0.49.

Fig. 1. Intensive and extensive product margins from 1970 to 1999 for countries pairs that already traded in 1970. Line 1 (blue) shows total real exports. This is then divided between exports in sectors in which pairs already traded in 1970 (line 2, orange) and amounts in new sectors (line 3, green).
4. Independent variables

4.1. Market access

To capture market access and the ability to circumvent artificial trade barriers, we use three measures of preferential market access: multilateral, bilateral, and unilateral. Trade liberalization under GATT/WTO is on a Most Favored Nation basis, whereby trade concessions granted to one member should be available to all members. Therefore, multilateral market access, the main focus of our paper, is captured by a dummy variable which takes the value 1 if both trading partners are members of the GATT/WTO and 0 otherwise. We also code a dummy that takes the value 1 if neither country in a country pair is a member of the WTO, with exactly one WTO member in a country pair as the omitted category. Data on dates of accession to the GATT/WTO are from the WTO website. Our data covers the period 1988–2006 and we find that 91 countries were already GATT/WTO members by 1988. 53 additional countries joined the WTO during the time period of our study (see Table C.1 in Appendix C for this list), whereas 45 countries remained outside the multilateral trading system up until 2006. This, in our view, provides sufficient variation in membership as well as changes in WTO membership over time.

Since the early days of GATT, there have been two major ways in which the non-discriminatory aspect has been violated. First, GATT permits exemptions to the MFN principle for regional or bilateral preferential trade arrangements that reduce local barriers to trade. Members in free trade areas and customs unions obtain privileged access to each other’s markets that do not have to be granted to non-members. Such bilateral preferential trade arrangements are captured by a dummy variable which takes the value 1 if both trading partners are members in a preferential trade arrangement (PTA). Data on PTAs are also from the WTO website. PTAs account for 3% of our sample and 1634 of the 24,261 country pairs were part of a PTA for at least one year of the sample. The second major exemption to the multilateral principle is the Generalized System of Preferences (GSP). This is a scheme of trade preferences granted on a non-reciprocal basis by developed countries to developing countries. We follow Eicher and Henn (2011) and code a dummy variable as 1 if the importing country grants a GSP to exporter 0 at time t.11 GSP data are from Andrew Rose’s website. 71 importing countries granted unilateral preferential access to at least one exporting country, whereas 124 exporters were beneficiaries under the GSP exception.

4.2. Gravity variables

We use traditional gravity variables—such as geographic distance, contiguity, colonial links, and linguistic similarities—to capture factors that facilitate or impede trade. Geographic distance is measured as the logarithm of the distance (in kilometers) between the two most populous cities. Contiguity is a dummy variable that takes the value 1 if the country pair shares a common border. Linguistic similarity is captured using two variables: one is a dummy that equals one if the country pair shares a common official language; the other takes the value one if a common language is spoken by at least 9% of the population. Colonial links are measured using two variables, one that measures whether a country pair were ever in a colonial relationship (one country was the colonizer and the other colonized or vice versa) and one that captures whether a country pair had a common colonizer (for instance, Singapore and Malaysia). Our final measure of links between countries is a dummy that takes the value one if a country pair in the past had been part of the same country (example, Georgia and Russia). Data on these variables are obtained from the CEPII bilateral distance database (www.cepii.fr).

Table C.2 in Appendix C presents the summary statistics for measures of extensive and intensive margins as well as for other variables used in this paper. When all independent variables are included, our sample size has 231,501 country-pair–year observations covering 24,594 country pairs, comprised of 190 exporters and 168 importers over the period 1988–2006.

4.2.1. Empirical specification

Our benchmark specification of the gravity equations for the extensive and margins is the following:

\[
\log N_{it} = \beta_{0it}^\text{both} + \beta_{1it}^\text{both} \text{WTO}_{it} + \beta_{2it}^\text{none} \text{none}_{it} + \beta_{3it} Z_{it} + \mu_{it} + \epsilon_{it} \quad (3)
\]

\[
\log X_{it} = \beta_{0it}^\text{both} + \beta_{1it}^\text{both} \text{WTO}_{it} + \beta_{2it}^\text{none} \text{none}_{it} + \beta_{3it} Z_{it} + \mu_{it} + \epsilon_{it} \quad (4)
\]

where \(\text{WTO}_{it} = 1 \) if both origin and destination are WTO members and 0 otherwise; \(\text{none}_{it} = 1 \) if both origin and destination are outside the WTO and 0 otherwise; \(Z_{it} \) is a vector of traditional gravity variables including dummies for PTA and GSP; \(\mu_{it} \) are exporter-year dummies; and \(\mu_{it} \) are importer-year dummies.12 Using such time-varying exporter and importer dummies dramatically reduces the scope for omitted variables, mis-measurement and even potential endogeneity in WTO membership. These dummies will not only capture global shifts in the patterns of world trade, but also changes in exports and imports of each country, some of which may be attributable to WTO membership.13 At the same time, any changes in the HS-6 classification will also be subsumed in these dummies. We also use the Feenstra–Kee extensive and intensive margins as a robustness check.

From the definitions of the extensive and intensive margins, we can write overall bilateral trade as

\[
\log X_{it} = \log N_{it} \cdot \log X_{it} \cdot \log \overline{\text{X}}_{it}.
\]

Therefore, the sum of the estimated coefficients for the same variable in Eqs. (3) and (4) gives the coefficient on the same variable in a standard gravity estimate with total bilateral trade as the dependent variable. For the Feenstra–Kee margins, the decomposition is

\[
\log X_{it} = \log EM_{it} + \log IM_{it} + \log \overline{\text{X}}_{it}
\]

where the last term \(\overline{\text{X}}_{it} \) will be absorbed in \(\mu_{it} \), the time-varying importer dummies.

In our benchmark specification, we rely on both cross-sectional and time variation across country-pairs to identify the WTO effect. While \(\overline{\text{X}}_{it} \) includes most of the oft-used gravity variables, we may face an omitted variable problem by inadvertently neglecting some important determinants of bilateral trade. These bilateral variables may account not just for the extensive and intensive margins, but more critically, may also drive selection into WTO membership for a country-pair.14 Therefore, in a subset of specifications, we also add time-invariant country-pair dummies to account for all variation that is time-invariant but specific to bilateral pairs. Here we identify the WTO effect through changes in WTO status for country-pairs over time. Overall, the use of panel-data with both country-year and country-pair dummies...
Table 1
Gravity specification for the extensive and intensive margins.

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Extensive margin (count)</td>
<td>Intensive margin (exports per product)</td>
<td>Extensive margin (count)</td>
<td>Intensive margin (exports per product)</td>
<td>Extensive margin (Feenstra–Kee)</td>
<td>Intensive margin (Feenstra–Kee)</td>
<td>Extensive margin (Feenstra–Kee)</td>
</tr>
<tr>
<td>Both in GATT/WTO</td>
<td>0.492***</td>
<td>−0.255**</td>
<td>0.223***</td>
<td>−0.065**</td>
<td>0.209*</td>
<td>0.027</td>
<td>0.219***</td>
</tr>
<tr>
<td>None in GATT/WTO</td>
<td>−0.134</td>
<td>0.315***</td>
<td>−0.040</td>
<td>−0.048</td>
<td>0.119</td>
<td>0.066</td>
<td>−0.017</td>
</tr>
<tr>
<td>Preferential trading arrangement</td>
<td>−0.147***</td>
<td>0.048</td>
<td>−0.004</td>
<td>0.297***</td>
<td>−0.410***</td>
<td>0.311***</td>
<td>−0.099***</td>
</tr>
<tr>
<td>GSP</td>
<td>0.329***</td>
<td>0.260***</td>
<td>0.078**</td>
<td>0.144</td>
<td>0.455***</td>
<td>0.134***</td>
<td>0.070</td>
</tr>
<tr>
<td>Distance</td>
<td>−0.963***</td>
<td>−0.517***</td>
<td>−0.019</td>
<td>0.407***</td>
<td>0.091</td>
<td>0.003</td>
<td>0.014</td>
</tr>
<tr>
<td>Contiguity</td>
<td>0.312***</td>
<td>0.065</td>
<td>0.053</td>
<td>0.064</td>
<td>0.085</td>
<td>0.292***</td>
<td>0.053</td>
</tr>
<tr>
<td>Common official language</td>
<td>0.428***</td>
<td>−0.019</td>
<td>0.030</td>
<td>0.046</td>
<td>0.097</td>
<td>0.001</td>
<td>0.057</td>
</tr>
<tr>
<td>Common language spoken by at least 9% of population</td>
<td>0.116*</td>
<td>0.079</td>
<td>0.035</td>
<td>0.046</td>
<td>0.096</td>
<td>0.099**</td>
<td>0.045</td>
</tr>
<tr>
<td>Colonial relationship</td>
<td>0.683***</td>
<td>0.402***</td>
<td>0.065</td>
<td>0.059</td>
<td>0.576***</td>
<td>0.509***</td>
<td>0.067</td>
</tr>
<tr>
<td>Same country</td>
<td>0.551***</td>
<td>0.445***</td>
<td>0.030</td>
<td>0.039</td>
<td>0.647***</td>
<td>0.348***</td>
<td>0.057</td>
</tr>
<tr>
<td>Number of pairs</td>
<td>24,594</td>
<td>24,594</td>
<td>24,594</td>
<td>24,594</td>
<td>24,594</td>
<td>24,594</td>
<td>24,594</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.84</td>
<td>0.53</td>
<td>0.95</td>
<td>0.77</td>
<td>0.66</td>
<td>0.48</td>
<td>0.83</td>
</tr>
<tr>
<td>Country-year effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Pair effects</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Standard errors adjusted for clustering on country-pairs in parentheses.

All columns include a constant (not shown).

* Significant at 10%.
** Significant at 5%.
*** Significant at 1%.
allows us to account for selection of countries and country pairs into WTO and PTA membership, as emphasized by Baier and Bergstrand (2007).

We also examine whether the effect of the WTO is increasing, decreasing, or roughly constant over time. We do so in two ways: First, we estimate the gravity models for the two models year by year, with exporter and importer dummies. While the year-by-year specification does not account for selection into WTO (see Baier and Bergstrand, 2007, who make a case for using panel data to account for endogeneity of PTA membership) it is a more general specification allowing us to estimate year-specific coefficients for every independent variable. Second, we use pooled data with country-year dummies, but we allow the coefficient on the WTO to be year-specific by interacting WTO(both) and WTO(OA) with year dummies.

5. Results

5.1. Baseline estimates

Table 1 reports the results from estimating gravityspecifications for our two measures of the extensive and intensive margins. We first examine WTO membership for a specification with only time-varying exporter and importer fixed effects. We subsequently add country-pair fixed effects where all time-invariant regressors are absorbed in these fixed effects. Standard errors are adjusted for clustering on country pairs.

In column 1 of Table 1, we see that the extensive margin of exports is significantly higher when both countries are WTO members. The estimated coefficient on Both in WTO dummy in column 1 implies that if both countries in a pair are members of the WTO, then relative to when exactly one is a WTO member (the omitted category), the extensive margin of exports is higher by 63.5%. Similarly, country-pairs where both are WTO members have an 87% higher extensive margin relative to the case when neither are WTO members. Column 2 shows that WTO membership significantly reduces the extensive margin of exports by about 22.5% (43.6%), relative to when exactly one country in a pair is a WTO member (neither are WTO members). Adding the two coefficients, we see that the WTO increases bilateral exports by approximately 26.7%.

Columns 3 and 4 add country-pair fixed effects to the specification in columns 1 and 2, which account for all pair-specific time-invariant characteristics. We see a similar finding: over time, a change in WTO status from when only one country in a pair is a WTO member to when both become WTO members increases the extensive margin and reduces the intensive margin. Since these are within estimates, not surprisingly, the magnitude of impact falls relative to columns 1 and 2. When both countries in a country-pair become WTO members, they experience an increase in the extensive margin by 25% and a reduction in the intensive margin by 6.3%. These effects are relative to when only one country in the pair was a WTO member. The increase in the extensive margin is 30.1% relative to when the status change has both countries simultaneously joining the WTO.

These results suggest that WTO membership acts more like a reduction in the fixed costs of trade—by reducing fixed costs it increases the number of products exported from origin to destination and by bringing in new smaller exporters, it reduces the intensive margin of exports.

Next, in columns 5–8, we replicate the results with the Feenstra–Kee measure of extensive and intensive margins and present the gravity estimates for the decomposition based on Eq. (6). In column 5, with only country-year fixed effects, we see that common WTO membership significantly increases the extensive margin of exports, relative to when only one country is a member of the WTO. However, column 6 shows that there is an insignificant effect on the intensive margin of exports. When we add country-pair fixed effects in columns 7 and 8, we find that with this more demanding specification, WTO membership increases the Feenstra–Kee extensive margin of exports by 24.5% but reduces the intensive margin by 5.9% (relative to when only one country was a WTO member).

In columns 3 and 4, the estimated coefficients for bilateral PTAs imply that country pairs who are members of a bilateral PTA exhibit similar extensive margins but higher intensive margins, with an overall positive impact on bilateral exports. Columns 1 and 2 find a positive role for the Generalized System of Preferences, i.e. market access granted by rich countries to poor countries. GSPs are instrumental in raising both extensive and intensive margins relative to countries that lack such market access. However, once we include country-pair effects, columns 3 and 4 show that GSP has an effect only on the extensive margin. This is in contrast to Rose (2004a), who shows that the Generalized System of Preferences plays a stronger role in trade flows.

Next, the traditional gravity variables have significant explanatory power for the two margins. Distance reduces both the extensive and
The extensive margin of exports, which is consistent with the role of distance as capturing variable trade costs. Having a common border raises the extensive margins but has no effect on the intensive margin. Linguistic similarity mainly impacts the extensive margin while colonial links positively influence both export margins. Finally, if a country pair was part of the same country, then these past ties tend to increase both margins. Overall, the traditional gravity variables affect the extensive margin of exports in much the same as it has been shown to affect bilateral trade flows.

5.2. Year-specific estimates of WTO membership

In Table 2 we show how the effect of WTO membership on the two margins has evolved over time. We first estimate gravity specifications for the extensive and intensive margins year by year, where each specification includes a set of dummies for exporters and another for importers, as well as all pair-specific gravity variables shown in Table 1. Once again, such a specification should also account fully for the multilateral trade resistance terms. Columns 1 and 2 in Table 2 report only the coefficient and significance of the dummy variable “Both in WTO”. For 15 years of our sample, WTO membership has a positive effect on the extensive margin of exports. It has a negative or insignificant influence on the extensive margins of exports. Columns 3 and 4 use pooled data but estimate year-specific coefficients for the WTO dummies (both in WTO and neither in WTO) by interacting WTO\text{GDP} and WTO\text{GDP} with year dummies. We obtain coefficient estimates nearly identical in sign, magnitude, and significance as compared to columns 1 and 2; WTO membership again exhibits a strong positive effect on the extensive margin of exports.

Interestingly, the magnitude of the effect of the WTO on the extensive margin is the greatest just prior to the transition from GATT to the WTO in 1995. Subramanian and Wei (2007) present data showing that countries that joined prior to 1995 undertook fewer obligations to bind tariffs in the industrial sector, and bound tariffs at much higher levels in the industrial sector and in the agricultural sector as compared to those that joined after the 1995 transition from GATT to WTO. Since these countries did not have to undertake significant trade liberalization, WTO membership for them may be analogous to a reduction in the fixed costs of trade. Only for countries that joined after 1995 did WTO membership entail significant tariff concessions. For these countries, WTO membership seems more like a reduction in the variable costs of trade. If this is the case, then prior to 1995 we should observe WTO membership as having a positive impact on the extensive margin and a negative impact on the intensive margin. In contrast, post Uruguay-round the WTO may work via reduction in variable trade barriers, increasing the extensive margin but with an ambiguous or zero impact on the intensive margin. (If productivities have a Pareto distribution as in Chaney (2008), then a reduction in solely variable trade costs has no impact on the intensive margin; more generally, the net impact of a combined reduction in fixed and variable trade costs has an ambiguous impact on the intensive margin.) The results in Table 2 are somewhat consistent with such an expectation. First, we see a positive impact of WTO on the extensive margin for all years. Second, we observe a zero impact post-1995 on the intensive margin and a negative impact on the intensive margin in 1992 and 1994.

5.3. Separating out effects of trade preferences

Subramanian and Wei (2007) argue that bilateral, unilateral, and multilateral preferences involve different degrees of liberalization; then defining them as we do in Table 1 contaminates the estimates. They recommend that WTO, PTA and GSP be defined mutually exclusively in order to be able to isolate the impact of each and identify what they dub “the pure WTO effect”. However, as Eicher and Henn (2011) point out, Subramanian and Wei’s hierarchical classification of dummies, with PTAs at the top and WTO at the bottom of the classification hierarchy, assumes that PTA membership represents the culmination of trade integration. They show that such a coding produces a WTO effect that is actually a PTA effect. Therefore, we use a different 7-fold classification to define trade preference dummies in a mutually

Note that Baier and Bergstrand (2007) argue that such cross-section estimates may fail to account for endogeneity and recommend the use of panel data.

exclusive and exhaustive fashion to identify a pure WTO effect. These are as follows.

1. Both countries of a country pair are WTO members but they do not belong to a PTA and the importer does not extend GSP to the exporter. This is the pure WTO effect.
2. Both are members of a common PTA, but at least one of them is not a member of the WTO and the importer does not extend GSP to the exporter. This is the pure PTA effect.
3. The importer extends GSP to the exporter but at least one of them is not a member of the WTO, nor do they belong to a common PTA. This is the pure GSP effect.
4. Both are members of the WTO, and at the same time, are members of a common PTA, but the importer does not extend GSP to the exporter. This is the pure WTO effect.
5. Both are members of the WTO, the importer does not extend GSP to the exporter, but they do not belong to a common PTA.
6. Both are members of the WTO and are in a common PTA and the importer extends GSP to the exporter.
7. Both are members of a common PTA, the importer extends GSP to the exporter, and at least one country in the pair is not a WTO member.16

The results are reported in Table 3 for the count and export-per product measures of the margins. We show results for the two margins with exporter and importer country-year effects in columns 1 and 2, and with both country-year and country-pair effects in columns 3 and 4. Columns 1 and 2 also include the pair-specific gravity variables from Table 1 (not shown.) For the extensive margin, we observe a positive and significant coefficient whenever both countries in a pair are WTO members. More importantly, the coefficient in column 1 (or in column 3) on pure WTO effect implies that country pairs who grant each other only multilateral preferences exhibit a 44% (or 27% respectively for column 3) increase in the extensive margin of exports. The pure WTO effect on the intensive margin is negative once we include country-pair effects. The pure PTA effect on the two margins is insignificant while the pure GSP effect is positive for both margins of trade.17

5.4. Developed vs. developing country

Developed countries undertook far greater trade liberalization under the auspices of GATT reducing their average tariffs from 15% in 1947 to about 4.5% (Subramanian and Wei, 2007). In contrast, developing countries had far fewer obligations to liberalize tariff barriers under the Special and Differentiated (S&D) treatment. Such an asymmetry implies that we should expect differential effects for GATT/WTO membership for developed vs. developing countries. For developed country importers, GATT/WTO membership should work by reducing the variable costs of trade, which should have a positive impact on the extensive margin of their exporting partners (in terms of product counts) and an ambiguous or zero impact on the intensive margin of exports (in terms of exports per product). For developing country importers, GATT/WTO membership may only be about reducing the fixed costs of trade. This should have a positive impact on the extensive margin and

16 Note that our classification is simply mutually exclusive and not hierarchical. For example, the Subramanian-Wei classification would use only three dummy variables: one for countries that are members of a PTA, one for countries where the importer grants a GSP but where the country pairs are not members of a PTA, and a third for where the countries are WTO members but not in a common PTA and where the importer does not extend GSP to the exporter.

17 We get nearly identical results with the Feenstra–Kee measures.
a negative impact on the extensive margin of their export partners. We examine this by estimating gravity specifications for the extensive and intensive margins separately for sub-samples of developed and developing country importers. We use the Rose (2004a) categorization of countries into developed vs. developing.

These results are shown in Table 4 where all columns include country-year fixed effects. Columns 1 and 2 show the gravity estimates where the importer in a country pair is a developed country. We observe that WTO membership increases the extensive margin for their export partners and has an insignificant effect on the intensive margin, in line with the role of WTO membership reducing variable trade costs for these exporters in the destination country. Columns 3 and 4 show the estimates for the margins when the importing country is a developing country. Here we see that WTO membership increases the extensive margin and significantly reduces the intensive margin. This in turn is consistent with conceiving WTO membership as reducing the fixed costs of trade.

5.5. Robustness

Recent papers by Evenett and Venables (2002), Anderson and van Wincoop (2004), Haveman and Hummels (2004), and Helpman et al. (2008) all highlight the prevalence of zero bilateral trade flows. This is a potential concern for our estimates, since the dataset that we use to calculate the various margins reports only positive levels of trade. In our data, over the period 1988–2006, 37% of all possible bilateral trade flows show a zero value. For these country pairs, the extensive margin is clearly equal to zero but taking log of the extensive margin automatically drops these observations. Helpman et al. (2008) argue that this introduces two forms of bias: one is the standard sample selection bias and the second is a heterogeneity bias that arises from acknowledging that firms are heterogeneous and self-select into exporting. While the use of country-pair dummies accounts for the selection problem in a cross-section, we may continue to face a time-varying selection problem. Therefore, as the first robustness check, we followed Helpman et al. (2008) (HMR) to correct for both types of bias. We estimated the probability of positive exports from o to d, year by year in a probit specification, and used this to predict two values: a latent variable that determines self-selection into exports and corrects for heterogeneity bias, and the inverse Mills ratio to correct for sample selection bias. We used these two variables to replicate and run the augmented HMR gravity specification. Across measures of extensive and intensive margins, and across specifications, we find that even after correcting for both selection and heterogeneity bias, WTO membership increases the extensive margin and reduces the intensive margin.19

Second, we checked whether our results are not an artifact of the time frame and product classification used. To do this, we reran all our models using the World Trade Flows Database. While this database spans the time period 1962–1999, data are available only at the four digit level resulting in coarser measures of extensive and intensive margins. As with the COMTRADE data, we find that WTO membership has a positive and significant effect only on the extensive margin of trade.

Third, we evaluated whether the effect of the WTO was mainly due to multiple countries joining around the year of the switch from GATT to WTO. We did this by confining our sample to exporters who joined prior to 1994 or after 1996. Again, we find that the extensive margin is positively influenced by WTO membership. Similarly, when we confine our sample to importers who joined prior to 1994 or after 1996, the extensive margin of exports continues to be positively influenced by WTO membership. We also allowed the sample to vary across various GATT/WTO rounds. If we split the sample into pre-Uruguay round vs. post-Uruguay round, none of our results are qualitatively affected. As another sub-sample check, we dropped all the original members of GATT who signed the original GATT agreement in 1948. Again, this does not alter our conclusions regarding the importance of WTO membership for the extensive margin. In the final check, we evaluated if our results are simply driven by China’s joining the WTO in the year 2001 (with other new members relatively unimportant in terms of their share in world trade). In both the overall sample which includes China and the sub-sample that excludes China, the coefficient on WTO membership is barely distinguishable in terms of magnitude and significance. Finally, we followed Tomz et al. (2007) and reclassified de facto members outside the WTO also as WTO members. This too does not alter our conclusions.

6. Discussion and conclusion

Rose (2004a) highlights the WTO puzzle—that the biggest changes in international trade rules have failed to have an impact on the volume of trade between pairs of countries. Our paper decomposes the volume of trade into the extensive and intensive margin and shows that WTO membership has been instrumental in raising the extensive margin of trade while its impact on the intensive margin is negative. The positive impact on the extensive margin and the negative impact of the intensive margin are consistent with the role of the WTO as reducing the fixed rather than variable costs of trade. Our empirical results (with respect to the WTO) on the extensive margin are in line with the standard Melitz/Chaney models of trade. The varying impact of WTO membership on the two margins holds across an array of permutations—accounting for the multilateral trade resistance terms and endogeneity of WTO and PTA membership via exporter and importer country-year effects and country-pair effects, for the prevalence of zeros in trade flows, and for various sub-samples and time periods. Unlike Rose (2004a), we do find that the overall impact of the WTO on total bilateral exports is positive and that it is the extensive margin channel through which WTO membership raises trade.

While the effect of WTO as reducing the fixed costs of trade is consistent with our results, there exists another intriguing possibility. Perhaps WTO is not at all about reducing trade barriers, variable or fixed. Rather it serves to resolve uncertainty in the mind of potential exporters regarding the evolution of international trade rules and they respond by exporting newer products into newer markets. This is the argument made most forcefully in Bagwell and Staiger (2001). The authors argue that GATT/WTO is not simply about market access through tariff reductions. Rather, WTO rules allow governments to credibly commit to market access and secure this access against unilateral policy interventions that undermine the link between market access and negotiated tariff reductions.20 Handley and Limão (2010) use a dynamic, heterogeneous firms model to show how a reduction in trade policy uncertainty increases firm entry and trade. Empirically, they show that Portugal’s accession to the European Community (EC) in 1986 reduced

18 All these results are available from the authors upon request.

19 HMR argue that trade barriers that affect fixed costs of exporting but not variable trade costs are valid exclusion restrictions and should be included in the first-stage probit specification. Helpman et al. (2008) for their cross-sectional gravity estimates use the common-religion index and the fixed costs of setting up a business from the World Bank’s Doing Business indicators as exclusion restrictions. We used a time-varying measure of their common-religion index as an exclusion restriction since the Doing Business based indicators are not available over time. However, finding a valid exclusion restriction for the extensive margin is non-trivial since both fixed and variable costs affect the extensive margin. Therefore, we estimated the WTO effect on the margins with and without an exclusion restriction, and found nearly identical estimates. In the absence of an exclusion restriction, we rely on identification from the nonlinearity of the inverse Mills ratio.

20 The WTO’s website emphasizes that one of the principle role of the WTO is to reduce uncertainty and increase predictability. It explicitly states: “The multilateral trading system is an attempt by governments to make the business environment stable and predictable.”
trade policy uncertainty and led to substantial investment and entry of Portuguese exporters into EC markets. Handley (2012) uses Australian data to show that multilateral policy commitments at the WTO reduce uncertainty and increase the extensive margin of exports. Our results that show that WTO accession increases the extensive margin of exports when we consider all participants in world trade, are in the same vein.

The impact of the WTO on the extensive margin and thus on export diversification also has important consequences on the role of WTO in economic development. Acemoglu and Zilibotti (1997) show that firms' marginal costs follow a Pareto distribution.

Appendix A. Theoretical framework

A.1. Overview

We relate a version of the model in Chaney (2008) to help frame our empirical results. We define the extensive and intensive margins, link them to the gravity variables in our estimation, and derive comparative statics of these margins with respect to the fixed and variable trade costs that are affected by entry into the WTO. We simplify Chaney (2008) by considering only a single sector of differentiated goods and then extend it by not assuming that the firms’ marginal costs follow a Pareto distribution.

Each differentiated good is produced by a single firm operating in a single country. The good is sold domestically and might also be exported. The firm makes a decision of whether to produce at all and which markets to export to; each of these entry decisions incurs a fixed cost. The firm faces constant marginal costs of production and trade and sets the price of its good in each market in which it enters.

We focus on trade flows to a single destination country d from all countries, including itself. The origin countries are indexed by $o = 1, \ldots, N$. The supply of labor in country i is denoted L_i. There is a homogeneous good, chosen as numeraire, which is produced at constant returns to scale, with 1 unit of labor yielding w_i units of the good. We assume it is produced in equilibrium in each country, and hence w_i is the wage in country i. The other source of income will be profits of the firms selling differentiated goods. Following Chaney (2008), we assume that profits are distributed worldwide proportional to labor income. Let π be the ratio of profits to labor income; then $Y_i = (1 + \pi)w_iL_i$.

A.2. The destination market

Consider the consumption decisions of the representative agent in a single destination market d. Omitting the indices d and o, let j be the set of differentiated goods sold there (includes imports and domestic products), endowed with some measure. Let q_j be the consumption of good $j \in J$ and let q_{0d} be the consumption of the homogeneous good. The representative agent’s utility is Cobb–Douglas $U(\cdot) = Q^\alpha q_0^{1-\alpha}$, where

$$Q = \left(\int q_j^{\beta} dj \right)^{1/\beta}$$

is a usual CES aggregate over the differentiated goods, with elasticity of substitution $\varepsilon > 1$ and $\beta = 1 - \varepsilon$. The destination country’s income is Y, of which fraction μ is spent on differentiated goods. Each differentiated good is produced by a single firm, so that j indexes both goods and firms. (A multi-product firm can be treated as a collection of independent firms, one controlling each product, as long as its set of products has mass 0.) Firm j’s profit-maximizing price is a multiple c_j/ν of its constant marginal cost c_j. Its revenue x_j is

$$x_j = \left(\frac{P}{p_j} \right)^{\gamma} \mu Y$$

where

$$P = \left(\int \frac{p_j}{p/\nu} dj \right)^{-1/\gamma}$$

and its profit are a fraction $1/\gamma$ of its revenue x_j. Define $a_j = c_j/\nu$ and $A = \int a_j/dj$; then $(P/p_j) = a_j/A$ and we can rewrite revenues as

$$x_j = \frac{a_j}{A} \mu Y.$$ \hfill (A.2)

The variable a_j is an inverse measure of j’s marginal cost adjusted by the elasticity of demand in d. It is a measure of the competitiveness of j when selling in d, while A captures the aggregate competition in d.

Consider the entry decisions. Let J be the set (measure space) of all potential firms. Firm j has a fixed entry cost F_j that drives the entry decision but does not affect the pricing decisions. Given the entry decisions of all the other firms, i.e., given A, firm $j = J$ will want to be in the market if its profit $(1/\gamma)Y_j$ exceeds its fixed cost F_j, i.e., if and only if

$$F_j \leq \frac{\mu Y}{A}.$$ \hfill (A.3)

Entry decisions J are an equilibrium if and only if this inequality holds for all $j \in J$ and the opposite inequality holds for all $j \in \overline{J}$. An equilibrium in this type of congestion game always exists and here it is unique up to a set of firms of measure 0. Firms can be ranked by a composite cost index F_j/a_j that reflects both fixed and variable costs; in equilibrium, firms below a certain cost threshold enter and above that threshold do not.

A.3. Bilateral trade flows

Let γ_d be the mass of firms in origin country o by $k \in [0,1]$, with a uniform distribution on this interval. That is, a typical firm in o that might export to d is indexed by od, where o is the country of origin and $k \in [0,1]$ is the index of the firm within that country of origin. The competitiveness of firm k in country o when exporting to d is $h_{od}(k)$. That is, for $j = od$, $q_j = h_{od}(k)$. Assume that h_{od} is a continuous and decreasing function of k: lower-index firms are more competitive and thus more productive. (Firms in o face the same labor cost and trade costs, and hence differences in margin cost are driven solely by differences in productivity.) We assume that the fixed cost of entry by a firm in o into the export market to d is the same for all firms in o; denote it by F_{od}.

Let k_{od} be the threshold index for origin country o such that firms $k \leq k_{od}$ in o to export to d. Define $H_{od}(k) = \int h_{od}(k) dk$. Then the aggregate competition of country-o firms that export to d is $A_{od} = \gamma_d H_{od}(k)$ and the aggregate competition of all firms that export to d is $A_d = A_{od} + \cdots + A_{Nd}$. Total nominal exports from o to d are

$$X_{od} = \gamma_d \int_0^{k_{od}} x_{od}(k) dk = \gamma_d \int_0^{k_{od}} h_{od}(k) dk A_{od} \frac{\mu Y_d}{A_d} = \frac{A_{od}}{A_d} \mu Y_d.$$ \hfill (A.4)

Following Eaton et al. (2004), Bernard et al. (2007), and Flam and Norström (2007), we define the extensive margin as the number of products exported (i.e., number of exporters) from o to d and the
intensive margin as the average exports per product (i.e., average exports per firm). The extensive margin is thus the mass of firms that export:

$$EM_d = \gamma_o \kappa_o d.$$

Assume an interior equilibrium in the sense that there is entry by some but not all firms from every origin country; then firm \(\kappa_o d \) is indifferent between entering and staying out of the market, and so

$$F_{od} = \left(1/ \alpha\right) \kappa_o d \mu_d Y_d,$$

which implies that

$$\kappa_o d = \left(\mu_d F_{od} / \alpha \right) \mu_d Y_d.$$

The (nominal) intensive margin is the average export per product from \(o \) to \(d \). This is total exports divided by the extensive margin:

$$IM_{od} = \frac{1}{\gamma_o d} \frac{A_{od}}{A_d} \mu_d Y_d.$$

A.4. Gravity equations with the Pareto distribution

Here we derive equations for bilateral trade and its decomposition into intensive and extensive margins, in terms of some of the usual gravity variables and with the log-linear form of gravity equations.

\(h_d \) reflects variation in the variable costs of firms in country \(o \), the general level of such costs in country \(o \), bilateral variable trade costs from \(o \) to \(d \), and the elasticity of substitution in country \(d \). For a closed-form solution, we would like to pick apart these components, and end up with \(\kappa_{od}(\cdot) \) and \(H_{od}(\cdot) \) being power functions of their direct arguments and any implicit parameters. This means that \(h_d \) should be a power function.

Let \(c_{od}(k) \) be the marginal cost of firm \(k \) in country \(o \) when exporting to country \(d \). This equals the cost \(c_{od}(k) \) of supplying its domestic market times the iceberg trade costs \(c_{od} \) from \(o \) to \(d \). We assume that the distribution of costs for domestic production are the same across all countries, except for a scaling factor so that \(c_{od}(k) = c_{od}(k) \). We can choose \(c(k) \) to have mean 1, so that \(c_o \) is the average marginal cost of the pool of potential firms in country \(o \). To obtain the decreasing power function \(h_d \), we assume that \(c(\cdot) \) is an increasing power function: \(c(k) = (1/y) k^{\gamma_o d - 1} \) for some \(y > 1 \). Then

$$h_{od}(k) = c_{od}(k)^{-\gamma_o d} = \left(\tau_{od} c_o (1/y) k^{\gamma_o d - 1}\right)^{-\gamma_o d} = \alpha_o d h_d(k),$$

where \(h_{od}(k) = (1/y) k^{\gamma_o d - 1} \), \(\tau_{od} = 1 - \gamma_o d (y - 1) \), and \(\alpha_o d = \tau_{od} c_o c_{od} Y_d \). The variable \(\alpha_o d \) is the average competitiveness of potential firms in \(o \) when exporting to \(d \), with the cross-country variations due to bilateral trade costs from \(o \) to \(d \), the average domestic costs within \(o \), and the elasticity of substitution in \(d \). It follows from \(y > 1 \) that \(\tau_{od} < 1 \). We assume also that \(\tau_{od} > 0 \), which constrains \(\tau_{od} \) to be not too large, so that the average competitiveness is finite.

Thus, the competitiveness of potential firms in \(o \) that export to \(d \) has a Pareto distribution. Inverting, \(h^{-1}_{od}(a) = (a^{\tau_{od}} (1/y) k^{\gamma_o d - 1})^{-\tau_{od}} \) and the threshold firm type for country \(o \) that exports to \(d \) is

$$\kappa_{od} = \left(\tau_{od} c_o \mu_d Y_d \right)^{-1}.$$

Furthermore,

$$H_{od} = \left(\frac{\kappa_{od} F_{od} A_d}{\alpha_o d Y_d} \right)^{-\gamma_o d}.$$

We assume further that the mass of potential firms is proportional to the labor income in a country. Since this is also proportional to total income given the way profits are distributed, there is \(\gamma \) such that \(\gamma_o = \gamma Y_o \) for all \(o \), with the caveat that \(\gamma \) depends on the endogenous determination of profits. Therefore, \(A_{od} = \gamma Y_o H_{od}(\kappa_{od}) \) and we can calculate \(A_d = A_{od} + \ldots + A_{od} \) as

$$A_d = \left(\frac{\kappa_{od} A_d}{\mu_d Y_d} \right)^{-\gamma} \gamma \sum_{o=1}^{N} Y_o \left(\frac{F_{od}}{\alpha_{od}} \right)^{-\gamma}.$$

Solving this equation for \(A_d \) yields

$$A_d = \left(\frac{\kappa_{od} A_d}{\mu_d Y_d} \right)^{-\gamma} \gamma \sum_{o=1}^{N} Y_o \left(\frac{F_{od}}{\alpha_{od}} \right)^{-\gamma}.$$

where \(Y \) is total world income and

$$\Pi_d = \sum_{o=1}^{N} Y_o \gamma \sum_{o=1}^{N} Y_o \left(\frac{F_{od}}{\alpha_{od}} \right)^{-\gamma}.$$

\(\Pi_d \) is a destination-specific measure of the competition in the destination market. It is a weighted average of inverse measures of bilateral variable and fixed trade costs for exporting to \(d \) and also for the destination country’s costs of domestic production; it is higher for destination countries to which it is generally easier to export or that can better satisfy themselves internally. We may interpret it as an inverse measure of \(d \)'s remoteness from the rest of the world or inverse of a multilateral trade-resistance index.

Substituting this equation for \(A_d \) into Eq. (A.6) and simplifying yields

$$\kappa_{od} = \frac{\mu_d}{\tau_{od} F_{od} \gamma Y_d} \left(\frac{\kappa_{od} A_d}{\mu_d Y_d} \right)^{-\gamma}.$$

We can now write out the gravity equations for the bilateral extensive margin, intensive margin, and total trade.

$$EM_{od} = \frac{\mu_d}{\tau_{od} F_{od} \gamma Y_d} \left(\frac{\kappa_{od} A_d}{\mu_d Y_d} \right)^{-\gamma} Y_o Y_d,$$

$$IM_{od} = \frac{\mu_d}{\tau_{od} F_{od} \gamma Y_d} \left(\frac{\kappa_{od} A_d}{\mu_d Y_d} \right)^{-\gamma} Y_o Y_d,$$

Appendix B. Comparative statics

B.1. Main idea

Our empirical study is on the effect that joining the WTO has on the bilateral intensive and extensive product margins. The story is that the WTO affects trade by reducing unobserved fixed and/or variable trade costs. From our results on the effect of WTO, we would like to back out, at least as a qualitative interpretation, whether WTO memberships brings mainly a reduction in fixed costs or mainly a reduction in variable costs. For this purpose, we want to understand what effect a reduction in these costs has on each margin of trade.

Consider the model in Sections A.1–A.3, that is, without imposing the assumption that the c.d.f. of the marginal costs is a power function. We address the comparative statics for a single origin–destination pair \(o \) and \(d \): the affect on \(EM_{od} \) and \(IM_{od} \) when the \(o \)-to-\(d \) fixed or variable trade costs fall. Bilateral iceberg trade costs \(\tau_{od} \) scale each firm’s competitiveness by \(\gamma_{od} \), so we write \(h_{od}(k) = \gamma_{od}^{-1} h_{od}(k) \), where \(h_{od} \) is a function
that remains fixed in this exercise and captures the distribution of marginal costs for country-o firms in the destination market in the absence of variable trade costs. We can normalize the mass of firms in country o to be 1, so that the extensive margin is merely κ_{od}.

B.2. Extensive margin

Consider first the extensive margin. Intuitively, a drop in either fixed or variable costs for country o leads to entry by additional firms into market d. That is, the extensive margin rises. This is simple to see if we ignore equilibrium effects on A_d and Y_d. The equilibrium entry condition, Eq. (A.5), can be rewritten here as

$$x(k) = \frac{h(k)}{\tilde{h}(k)} F_{od} = 1$$

Since $\tilde{h}(k)$ is a decreasing function, κ_{od} rises if either fixed trades costs F_{od} or variable trade costs τ_{od} go down, keeping A_d and Y_d fixed.

It is not difficult to obtain the same conclusion taking into account equilibrium effects on A_d and Y_d, giving us Proposition B.1.

Proposition B.1. Let κ_1 and κ_2 be the equilibrium levels of entry given values F_1 and F_2 of the fixed costs and values τ_1 and τ_2 of the variable costs, such that $F_2^2 \leq F_1^2$, $\tau_2 \leq \tau_1$. Then $\kappa_2 > \kappa_1$.

Proof. The values of A_d and Y_d are also endogenous; denote their corresponding values by A_1, A_2, Y_1, and Y_2. Since h is strictly decreasing, $\kappa_2 > \kappa_1$ if $A_2/Y_2 < A_1/Y_1$. Suppose instead that $A_2/Y_2 > A_1/Y_1$. We now assume $A_2 < A_1$ and derive a contradiction, namely that $A_2/Y_2 < A_1/Y_1$.

From Eq (B.1) written for each origin country $i \neq o$, $A_2/Y_2 < A_1/Y_1$ implies that $A_2 < A_1$, from the definition of A_2. Furthermore, given that there is less entry by all firms in this market and hence lower expenditure on fixed costs and given that there is no perturbation to the parameters of the other markets except through the general equilibrium effect on worldwide profits, one can show that worldwide profits must rise. (This is easy to see when we ignore the general equilibrium effects. Profits of all firms operating in country d are fraction $1/F_{od} Y_d$, constant except for equilibrium effects on Y_d minus the firms’ fixed costs.) Therefore, $Y_2 > Y_1$ and hence $A_2/Y_2 < A_1/Y_1$.

Thus, a mere increase in the extensive margin does not allow us to distinguish between a decrease in fixed costs or a decrease in variable costs.

B.3. Intensive margin: impact of a drop in fixed costs

Another fairly robust conclusion that does not depend on the Pareto distribution is that a decrease in F_{od} decreases IM_{od}. The lower F_{od} causes more entry by country-o firms. If a single one of these firms entered, it would have lower revenue than any of the other country-o firms already in the market because it has lower productivity. In addition, the additional market congestion from the firm that enters erodes the revenue of these firms and all other firms in the market. Both effects bring down IM_{od}.

However, there is a small countervailing general equilibrium effect: Keeping fixed the firms in the market, a reduction in their fixed costs increases their profit and hence worldwide income, including the income of the destination country. Again, keeping fixed entry decisions, the intensive margin is an increasing function of the d's income.

With the Pareto distribution and assuming an interior equilibrium (some but not all firms from each country enter), we have a straightforward result that this general equilibrium effect does not flip the comparative statics, since we derived the extensive margin as $IM_{od} = \epsilon F_{od} z_2$, where ϵ and z_2 are parameters. However, there are extreme cases in which it could dominate. Suppose, for example, that we start from an equilibrium in which all firms from o have entered market d. Then the decrease in fixed costs can have no impact on the number of firms in that market; only the impact on profits is present and so the intensive margin rises.

This example is extreme because it requires both that the destination country be large enough that profits generated there have a large impact on worldwide income and that entry into the market by country-o firms be very inelastic with respect to F_{od}. We do not try to obtain general results, rather merely note what happens when we keep income fixed—e.g., when the country is small.

Proposition B.2. Consider a variant of the model in Sections A.1-A.3 in which country d income is not affected by profits generated by bilateral trade from o to d (a precise model can be obtained by having this income accrue to a country N + 1 that has no labor and consumes only the homogeneous good). Then IM_{od} falls when F_{od} falls.

B.4. Intensive margin: impact of a drop in variable costs

The impact of a decrease in variable trade costs from o to d on the intensive margin is ambiguous. On the one hand, it raises the revenue of all firms active in the market. On the other hand, it causes more entry by less productive firms. It is not that the new firms have lower revenue than what the existing firms had before the drop in variable costs. On the contrary, the revenue of the marginal firm κ_{od} is always ϵF_{od}, as determined by the entry condition. However, there is a change in the overall distribution of revenues, with an ambiguous effect on the average revenue.

In the case of the Pareto distribution, these two effects exactly cancel each other. The intensive margin, equal to ϵF_{od}, is unaffected by changes in variable trade costs (recall that ϵ and z_2 are exogenous parameters). The purpose of this section is to understand what is special about the Pareto distribution that leads to this knife-edge result and what happens if we perturb the assumptions.

We first derive a formula for the intensive margin that depends only on the exogenous parameters ϵ, F_{od}, and τ_{od} and the endogenous level of entry κ_{od}. This is possible because a zero-profit condition for the marginal firm pins down that firm’s revenue, and the other firms’ revenues depend on their competitiveness relative to the marginal firm. To simplify notation, we drop the o and d indices from most variables: $\epsilon = \epsilon_d$, $F = F_{od}$, $\kappa = \kappa_{od}$, and all firms are country-o firms.

From the Grossman–Stiglitz model, we need only two properties. The first is that each firm’s profit is fraction 1/ of its revenue. The second is that the ratio of the revenues of two active firms k_1 and k_2 is

$$\frac{x(k_1)}{x(k_2)} = \frac{h(k_1)}{\tilde{h}(k_2)}$$

Assume that κ is interior. Then the marginal firm has zero profit:

$$\frac{1}{\epsilon} x(\kappa) = F.$$

The marginal firm’s revenue is thus $x(\kappa) = F$ and each other active firm’s revenue is

$$x(k) = \frac{h(k)}{\tilde{h}(k)} F.$$}

Therefore, the intensive margin is

$$IM = \epsilon F \frac{1}{\tilde{h}(\kappa)} \int_{0}^{\kappa} h(k) \, dk.$$

Define $H(\kappa) = \int_{0}^{\kappa} h(k) \, dk$ and

$$\phi(\kappa) = \frac{H(\kappa)}{\tilde{h}(\kappa)}.$$
With this notation,
\[IM(\kappa) = \epsilon f \phi(\kappa). \]

We have written \(IM \) and \(\phi \) as functions of \(\kappa \) because we consider unspecified perturbations to the model that change the amount of entry \(\kappa \) but that do not change \(\epsilon, F, \) or the function \(h(\cdot) \) that determines the relative productivities. Then we can see that, whatever else has caused the change in entry, the intensive margin is a function only of the amount of entry. Our motivation is the effect of a reduction in variable costs, which we have already shown causes more entry, but we see that our conclusions apply to other factors that could generate more entry, such as an increase in the size of market \(d \). Furthermore, we can see that we do not have worry about other general equilibrium changes to the entry of other firms or to income.

In our application, the entry is caused by a reduction in the bilateral marginal trade cost between the origin and destination country, which scales all the firms’ marginal costs in the same way. We are interested in knowing the conditions under which a reduction in such trade costs makes the intensive margin rise. This is equivalent to conditions under which \(\phi \) is increasing, and it depends solely on the shape of the function \(h \) or, equivalently, on the distribution of marginal costs.

We could look at conditions on \(h \) but equivalently we can look at conditions on \(H \). This is useful because \(\phi \) is the inverse of the elasticity of \(H \):
\[\frac{1}{\phi(k)} = \frac{k}{H(k)} \frac{H(k) - k}{H(k)} = \frac{dH}{dk}. \]

Denote this elasticity by \(E(k) \). Then \(\phi \) is increasing in \(k \), and hence the intensive margin is increasing in \(\kappa \), if and only if \(E(k) \) is decreasing.

B.5. Some examples

We provide examples in which \(\phi \) is constant, increasing, and decreasing.

B.5.1. Constant \(\phi \)

\(\phi \) is constant if and only if \(E \) is constant. A function has constant elasticity if and only if it is a power function: \(H(k) = k^\beta \). Then \(h(k) = \frac{1}{\beta} k^{\beta - 1} \). Because \(h \) is strictly positive and weakly decreasing, \(\beta > 0 \) and \(z \in (0, 1] \). The case of \(z = 1 \), where \(H \) is then a line, corresponds to free entry: \(h(k) = \beta \) for all \(k \). The case of \(z \in (0, 1) \) corresponds to the Pareto distribution. Thus, we have replicated Chaney’s conclusion that the intensive margin is unaffected by variable trade costs (or other factors besides \(h \) or \(F \) that might change the level of entry) when productivities follow a Pareto distribution.

Our analyses also shows that these are necessary conditions: the intensive margin is insensitive to the variable trade costs only if the distribution of marginal costs within the origin country is a power function or all firms have the same marginal cost.

B.5.2. Increasing \(\phi \)

Suppose that the level of entry increases from \(\kappa_1 \) to \(\kappa_2 \). In both cases, firm revenue goes as low as \(F \). Firms of types \([0, \kappa_1] \) see their revenue increase from \((h(k)/h(\kappa_1)) F \) to \((h(k)/h(\kappa_2)) F \), and so the average revenue of these firms increases by a factor of \(h(\kappa_1)/h(\kappa_2) \). However, there is entry by firms \([\kappa_1, \kappa_2] \) whose revenue are on the low end. If there are enough of these firms, then overall average revenue may not increase. On the other hand, if the elasticity of entry with respect to the variable costs is not too high, then the average revenue will increase.

As a first example of increasing revenue, suppose that \(h(k) = 1 - k \). Then
\[H(\kappa) = \int_0^\kappa (1-k) dk = k - \frac{1}{2} \kappa^2 \mid_{k=0}^{\kappa} = \kappa - \frac{1}{2} \kappa^2. \]

Thus
\[\phi(\kappa) = \frac{1}{\kappa(1-\kappa)} \left(\kappa - \frac{1}{2} \kappa^2 \right) = 1 + \frac{\kappa/2}{1-\kappa}. \]

It is increasing in \(\kappa \).

We can also obtain increasing \(\phi \) a small shift to the Pareto distribution that bounds the marginal costs from below and thus bounds firm size from above, which is quite realistic. Specifically, assume \(h(k) = (1/z)(k + \eta)^{-1} \), where \(\eta > 0 \) and \(z \in (0, 1) \). Then
\[H(\kappa) = \int_0^\kappa (1/z)(k + \eta)^{-1} dk = (k + \eta)^{-1} \mid_{k=0}^{\kappa} = ((k + \eta)^{-1} - \eta^z). \]

Thus
\[\phi(\kappa) = \frac{Z}{\kappa(1 + \frac{\eta}{\kappa})^z - \eta} \left(\left(\frac{\kappa + \eta}{\kappa} \right)^z - 1 \right) \]

A numerical test shows that \(\phi \) is increasing in \(\kappa \) for \(\eta > 0 \).

B.5.3. Decreasing \(\phi \)

It is also easy to construct examples in which \(\phi \) is increasing, by mixing heterogeneous firms at the top with a pool of identical firms at the bottom. That is, \(h \) is initially decreasing but then is constant. \(H \) will initially be concave but then becomes a line. From the point where it becomes a line, the elasticity is increasing, and converges monotonically to 1.

B.6. Adding in heterogeneous fixed costs

These examples do not show a clear pattern of comparative statics. A more compelling adjustment to the Chaney (2008) model is to introduce heterogeneous fixed costs.

The simplest case is where the fixed cost also depends on \(k \): denote it by \(f(k) \) and assume that \(f \) is weakly increasing. Thus, low-productivity firms (higher \(k \)) have both weakly higher marginal costs and weakly higher fixed costs. This is a natural assumption. The distribution of the size of firms in the market, which depends on the distribution of their productivities, is unchanged by this extension. For example, if the marginal productivities follow a Pareto distribution, then so does the size of firms in the market.

The zero-profit condition for the marginal firm is \(f(\kappa) = x(\kappa) \). Otherwise replicating the preceding analysis, we derive that the intensive margin is \(f(x)\phi(\kappa) \). Therefore, if entry increases, for any reason except a change in or in the firms fixed costs, the intensive margin goes up weakly if \(f(x) \) is weakly increasing and \(\phi(x) \) is weakly increasing, and it goes up strictly if, in addition, \(f \) or \(\phi \) is strictly increasing.

The easiest case in which to understand this result is with identical marginal productivities. The marginal firm’s revenue is \(f(\kappa) \). But since each firm has the same revenue, the intensive margin is \(f(\kappa) \), and is thus increasing in the level of entry.

In this setup, the fixed costs and marginal costs of the heterogeneous firms are exactly in line with each other. This is extreme, but it is natural that these two costs be positively correlated. In the opposite extreme case in which the fixed costs and variable costs are distributed independently and variable costs have a Pareto distribution, we can still show that the intensive margin rises when variable costs fall as long as
there are some fixed costs low enough that all such firms have entered. (We omit the details.)

B.7. Multilateral changes in trade costs

Entry by destination country d into the WTO could reduce fixed or variable trade costs of all countries exporting to d. We have only considered the comparative statics with respect to a bilateral change in trade costs. However, our results hold up for such multilateral reduction in trade costs, with a caveat.

Suppose trade costs fall for all countries that export to d. For country o, there are two countervailing effects on its extensive margin EM_{od}: the reduction of its own trade costs cause more firms from other origin countries creates market congestion that deters entry by country-o firms.

Collectively, there must be more aggregate competition in market d. With symmetry between the origin countries, there must there be an increase in each country’s extensive margin of trade with d. However, there could be highly asymmetric cases and there is so much entry by firms from some countries that entry by firms from some other origin country is lower. Otherwise, the comparative statics derived above for the impact of a reduction in the bilateral trade costs for exporter o to destination d on that origin countries intensive and extensive margins hold also when all exporters trade costs fall.

Entry by d may also affect the extensive and intensive margins of firms from countries that remain outside the WTO. Here trade costs fall only for a subset of countries that export to d—the existing WTO members. Entry by firms from these countries creates market congestion, which may crowd out firms from non-WTO countries, reducing their extensive margin in d. The effect on the intensive margin from non-WTO members to d is ambiguous—since small exporters are more likely to exit this raises the export per product. At the same time, the market shares of firms from non-WTO counties that continue to export to d is likely to decline, reducing export per product. The overall impact on the intensive margin of non-WTO members may go either way.

Appendix C. Additional tables

Table C.1 Countries who joined the WTO after 1988 (the first year of our sample).

<table>
<thead>
<tr>
<th>Country</th>
<th>Year of WTO accession</th>
<th>Country</th>
<th>Year of WTO accession</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albania</td>
<td>2000</td>
<td>Lesotho</td>
<td>1988</td>
</tr>
<tr>
<td>Angola</td>
<td>1994</td>
<td>Lithuania</td>
<td>2001</td>
</tr>
<tr>
<td>Armenia</td>
<td>2003</td>
<td>Macao, China</td>
<td>1991</td>
</tr>
<tr>
<td>Bahrain</td>
<td>1993</td>
<td>Macedonia</td>
<td>2003</td>
</tr>
<tr>
<td>Bolivia</td>
<td>1990</td>
<td>Mali</td>
<td>1993</td>
</tr>
<tr>
<td>Brunei</td>
<td>1993</td>
<td>Moldova</td>
<td>2001</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>1996</td>
<td>Mongolia</td>
<td>1997</td>
</tr>
<tr>
<td>Cambodia</td>
<td>2004</td>
<td>Mozambique</td>
<td>1992</td>
</tr>
<tr>
<td>China</td>
<td>2001</td>
<td>Namibia</td>
<td>1992</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>1989</td>
<td>Nepal</td>
<td>2004</td>
</tr>
<tr>
<td>Croatia</td>
<td>2003</td>
<td>Oman</td>
<td>2000</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>1993</td>
<td>Panama</td>
<td>1997</td>
</tr>
<tr>
<td>Djibouti</td>
<td>1994</td>
<td>Papua New Guinea</td>
<td>1994</td>
</tr>
<tr>
<td>Dominica</td>
<td>1993</td>
<td>Paraguay</td>
<td>1994</td>
</tr>
<tr>
<td>Ecuador</td>
<td>1986</td>
<td>Qatar</td>
<td>1994</td>
</tr>
<tr>
<td>El Salvador</td>
<td>1991</td>
<td>Saudi Arabia</td>
<td>2005</td>
</tr>
<tr>
<td>Estonia</td>
<td>1999</td>
<td>Slovak Republic</td>
<td>1993</td>
</tr>
<tr>
<td>Fiji</td>
<td>1993</td>
<td>Slovenia</td>
<td>1994</td>
</tr>
<tr>
<td>Georgia</td>
<td>2000</td>
<td>Solomon Islands</td>
<td>1994</td>
</tr>
<tr>
<td>Grenada</td>
<td>1994</td>
<td>St. Kitts and Nevis</td>
<td>1993</td>
</tr>
<tr>
<td>Guatemala</td>
<td>1991</td>
<td>St. Lucia</td>
<td>1993</td>
</tr>
<tr>
<td>Guinea</td>
<td>1994</td>
<td>St. Vincent and the Grenadines</td>
<td>1993</td>
</tr>
<tr>
<td>Guinea-Bissau</td>
<td>1994</td>
<td>Swaziland</td>
<td>1993</td>
</tr>
<tr>
<td>Honduras</td>
<td>1994</td>
<td>Tunisia</td>
<td>1990</td>
</tr>
<tr>
<td>Jordan</td>
<td>2000</td>
<td>United Arab Emirates</td>
<td>1994</td>
</tr>
<tr>
<td>Kyrgyz Republic</td>
<td>1999</td>
<td>Venezuela</td>
<td>1990</td>
</tr>
<tr>
<td>Latvia</td>
<td>1999</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table C.2 Summary statistics.

<table>
<thead>
<tr>
<th>Variable</th>
<th>No. of obsv.</th>
<th>Mean</th>
<th>Std. dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extensive margin (count)</td>
<td>231,501</td>
<td>3.431</td>
<td>2.335</td>
</tr>
<tr>
<td>Intensive margin (exports per product)</td>
<td>231,501</td>
<td>11.130</td>
<td>2.277</td>
</tr>
<tr>
<td>Feenstra-Kee extensive margin</td>
<td>231,501</td>
<td>4.121</td>
<td>2.616</td>
</tr>
<tr>
<td>Feenstra-Kee intensive margin</td>
<td>231,501</td>
<td>4.970</td>
<td>2.219</td>
</tr>
<tr>
<td>Both in GATT/WTO</td>
<td>231,501</td>
<td>0.062</td>
<td>0.242</td>
</tr>
<tr>
<td>None in GATT/WTO</td>
<td>231,501</td>
<td>0.120</td>
<td>0.325</td>
</tr>
<tr>
<td>Preferential trading arrangement</td>
<td>231,501</td>
<td>8.625</td>
<td>0.852</td>
</tr>
<tr>
<td>CSP</td>
<td>231,501</td>
<td>0.025</td>
<td>0.156</td>
</tr>
<tr>
<td>Distance (log)</td>
<td>231,501</td>
<td>0.151</td>
<td>0.358</td>
</tr>
<tr>
<td>Common official language</td>
<td>231,501</td>
<td>0.156</td>
<td>0.363</td>
</tr>
<tr>
<td>Common language spoken by at least 9% of population</td>
<td>231,501</td>
<td>0.019</td>
<td>0.137</td>
</tr>
<tr>
<td>Colonial relationship</td>
<td>231,501</td>
<td>0.085</td>
<td>0.278</td>
</tr>
<tr>
<td>Common colonizer</td>
<td>231,501</td>
<td>0.012</td>
<td>0.110</td>
</tr>
<tr>
<td>Same country</td>
<td>231,501</td>
<td>0.373</td>
<td>0.323</td>
</tr>
</tbody>
</table>

References

Baldwin, Richard E., Murray, Tract, 1977. MFN tariff reductions and developing country trade benefits under the GSP, Econ. J. 87 (345), 30–46.