1. Modeling the salvage value (resp., cost of disposal) of excess supply

In this e-companion we analyze the forward and spot market equilibria when we allow a unit cost of disposal or salvage value for excess supply. Let c be this value. If $c > 0$ then the product has a positive salvage value. If $c < 0$ then the product has a cost of disposal. We assume further that $c \leq b$. That is, the salvage value does not exceed the marginal cost. The analysis in Section 3 of the main manuscript will be modified as follows. Producer i’s period 1 profit maximization problem can be written as

$$\max_{q_i \geq 0} \{ (P_s - b)q_i \}. \quad (54)$$

We can rewrite the problem as follows:

$$\max_{q_i \geq 0} \{ [a + \hat{\epsilon} - Q_f - q_i - q_s' - b]q_i \}. \quad (55)$$

Solving for the Nash equilibrium quantities and prices in this spot market Cournot game yields the result given in Proposition 8.

Proposition 8 The Nash equilibrium of the Cournot game in period 1 is unique. The equilibrium quantities are as follows.

1. If $\hat{\epsilon} \leq Q_f - a + b$, then $q_1^*(\hat{\epsilon}, Q_f) = 0$; also, $P_s(\hat{\epsilon}, Q_f) = \max(c, a + \hat{\epsilon} - Q_f)$.

2. If $\hat{\epsilon} > Q_f - a + b$, then $q_1^*(\hat{\epsilon}, Q_f) = a + \hat{\epsilon} - Q_f + \frac{2b}{3}$; also, $P_s(\hat{\epsilon}, Q_f) = a + \hat{\epsilon} - Q_f + \frac{2b}{3}$.

Note that if demand turns out to be low (i.e., $\hat{\epsilon} \leq Q_f - a + b$), then producers will not sell in the spot market. The only sales will come from speculators which will clear their inventory at the market clearing price, $\max(c, a + \hat{\epsilon} - Q_f)$. This price can be negative whenever $c < 0$ and $\hat{\epsilon} < Q_f - a$—that is, the product is costly to dispose of and there is no demand for the product at a price greater or equal to zero. The expected spot market price will be:

$$E_\epsilon(P_s) = \int_{Q_f + b - a}^{\infty} \frac{a + \epsilon - Q_f + 2b}{3} dF(\epsilon) + \int_{-a + Q_f + c}^{Q_f - a + b} (a + \epsilon - Q_f) dF(\epsilon) + cF(-a + Q_f + c). \quad (56)$$

In a rational expectations equilibrium, the forward price will be an unbiased estimator of the spot price.

$$P_f = E_\epsilon(P_s). \quad (57)$$

Next, we solve the producers’ profit maximization problem and determine the optimal forward quantity to sell in period 0. The total expected profit of producer i is

$$E_\epsilon(\Pi_i) = q_f^i (P_f - b) + E_\epsilon \left(q_s^i (P_s - b) \right). \quad (58)$$
Under the assumption of risk neutrality, the producer maximizes his expected profit:

$$\max_{q_i} E_e(\Pi_i).$$

(59)

We find that the forward market equilibrium is always symmetric and unique (i.e., $q^1_f = q^2_f$). Proposition 9 gives a formal statement of the equilibrium result.

Proposition 9 There always exists a unique forward market Nash equilibrium. The forward market equilibrium is symmetric and is given by $q^1_f = q^2_f = Q/2$, where $Q \geq 0$ is a fixed point of $\hat{G}(\cdot)$:

$$\hat{G}(Q) = 2 \int_{Q-a+b}^{Q-a+c} F^c(e) \, de - 9 \int_{Q-a+c}^{Q-a+b} F(e) \, de \over 3 + 6F(Q - a + b) - 9F(Q - a + c).$$

(60)

Proof of Proposition 9: Producer i’s profit maximization problem can be written as

$$\max_{q^i_f} q^i_f \left(\int_{Q_f+b-a}^{Q_f+b} \frac{a + e - Q_f + 2b}{3} \, dF(e) + \int_{a+Q_f+c}^{Q_f+b-a} (a + e - Q_f) \, dF(e) + cF(-a + Q_f + c) - b \right)$$

$$+ \int_{Q_f+b-a}^{Q_f+b} \left(\frac{a + e - Q_f - b}{3} \right) \left(\frac{a + e - Q_f + 2b}{3} - b \right) \, dF(e)$$

(61)

for $i = 1, 2$ and $Q_f = q^1_f + q^2_f$. The first-order conditions (FOCs) and second-order conditions (SOCs) for maximizing seller i’s profit (59) are

$$q^i_f = \int_{Q_f}^\infty F^c(e) \, de - 9 \int_{Q_f}^w F(e) \, de \over 3 + 6F(z) - 9F(w), \quad i = 1, 2,$$

(62)

$$3q_f^i (3f(w) - 2f(z)) - 4 - 14F(z) + 18F(w) \leq 0, \quad i = 1, 2.$$

(63)

where $z = Q_f - a + b$, $w = Q_f - a + c$.

Equation (62) indicates that the equilibrium is always symmetric ($q^1_f = q^2_f$). After adding the reaction equations (62) for q^1_f and q^2_f we get that Q_f is a fixed point of $\hat{G}(x)$ as given by

$$\hat{G}(x) = 2 \int_{x-a+b}^{x-a+c} F^c(x) \, de - 9 \int_{x-a+c}^{x-a+b} F(x) \, de \over 3 + 6F(x - a + b) - 9F(x - a + c).$$

One can show using identical steps as in the proof of Proposition 2 in the paper, that there exist a fixed point of $G(x)$ at which the second order condition is verified.

It is easy to see that the same insights from the comparative statics in Section 4 remain valid, with the only observation that the discussion is now in terms of $b - c$ rather than b. Specifically, if the fraction $(b - c)/a$ is below a threshold δ, then the more uncertain the demand, the higher is the quantity sold in the forward market and the lower is the relative volume of additional spot sales. In contrast, if $(b - c)/a$ is above a threshold δ, then the more uncertain the demand is, the lower the quantity sold in the forward market and the higher the expected additional spot sales. For intermediate values of $(b - c)/a$, the quantity sold in the forward market is U-shaped in the level of uncertainty.